Skip to main content

Low-complexity BCH codes with optimized interleavers for DQPSK systems with laser phase noise

Abstract

The presence of high phase noise in addition to additive white Gaussian noise in coherent optical systems affects the performance of forward error correction (FEC) schemes. In this paper, we propose a simple scheme for such systems, using block interleavers and binary Bose–Chaudhuri–Hocquenghem (BCH) codes. The block interleavers are specifically optimized for differential quadrature phase shift keying modulation. We propose a method for selecting BCH codes that, together with the interleavers, achieve a target post-FEC bit error rate (BER). This combination of interleavers and BCH codes has very low implementation complexity. In addition, our approach is straightforward, requiring only short pre-FEC simulations to parameterize a model, based on which we select codes analytically. We aim to correct a pre-FEC BER of around \(10^{-3}\). We evaluate the accuracy of our approach using numerical simulations. For a target post-FEC BER of \(10^{-6}\), codes selected using our method result in BERs around 3\(\times \) target and achieve the target with around 0.2 dB extra signal-to-noise ratio.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Garrett, I., Jacobsen, G.: Phase noise in weakly coherent systems. Optoelectron. IEE Proc. J 136(3), 159 (1989)

    Article  Google Scholar 

  2. 2.

    Jacobsen, G., Garrett, I.: Error-rate floor in optical ASK heterodyne systems caused by nonzero (semiconductor) laser linewidth. Electron. Lett. 21(7), 268 (1985)

    Article  Google Scholar 

  3. 3.

    Mogensen, F., Jacobsen, G., Olesen, H.: Light intensity pulsations in an injection locked semiconductor laser. Opt. Quantum Electron. 16(2), 183 (1984)

    Article  Google Scholar 

  4. 4.

    Pfau, T.: Carrier recovery algorithms and real-time DSP implementation for coherent receivers. In: Proceedings on OFC. W4K.1 (2014)

  5. 5.

    Taylor, M.G.: Phase estimation methods for optical coherent detection using digital signal processing. J. Lightw. Technol. 27(7), 901 (2009)

    Article  Google Scholar 

  6. 6.

    Leven, A., Schmalen, L.: Status and recent advances on forward error correction technologies for lightwave systems. In: Proceedings on ECOC. We.2.C.1 (2013)

  7. 7.

    Chang, F., Onohara, K., Mizuochi, T.: Forward error correction for 100 G transport networks. IEEE Commun. Mag. 48(3), S48 (2010)

    Article  Google Scholar 

  8. 8.

    Lin, S., Costello, D.J.: Error Control Coding, 2nd edn. Prentice Hall, New Jersey (2004)

    MATH  Google Scholar 

  9. 9.

    Schmalen, L.: A low-complexity LDPC coding scheme for channels with phase slips. J. Lightw. Technol. 33(7), 1319 (2015)

    Article  Google Scholar 

  10. 10.

    Koike-Akino, T., Kojima, K., Millar, D., Parsons, K., Miyata, Y., Matsumoto, W., Sugihara, T., Mizuochi, T.: Cycle slip-mitigating turbo demodulation in LDPC-coded coherent optical communications. In: Proceedings on OFC. M3A.3 (2014)

  11. 11.

    Yu, F., Stojanovic, N., Hauske, F., Chang, D., Xiao, Z., Bauch, G., Pflueger, D., Xie, C., Zhao, Y., Jin, L., Li, Y., Li, L., Xu, X., Xiong, Q.: Soft-decision LDPC turbo decoding for DQPSK modulation in coherent optical receivers. In: Proceedings on ECOC. We.10.P1.70 (2011)

  12. 12.

    Leong, M.Y., Larsen, K.J., Jacobsen, G., Popov, S., Zibar, D., Sergeyev, S.: Dimensioning BCH codes for coherent DQPSK systems with laser phase noise and cycle slips. J. Lightw. Technol. 32(21), 4048 (2014)

    Article  Google Scholar 

  13. 13.

    Leong, M.Y., Larsen, K.J., Jacobsen, G., Popov, S., Zibar, D., Sergeyev, S.: Interleavers and BCH codes for coherent DQPSK systems with laser phase noise. IEEE Photon. Technol. Lett. 27(7), 685 (2015)

    Article  Google Scholar 

  14. 14.

    Dolinar, S., Divsalar, D.: Weight distributions for turbo codes using random and nonrandom permutations. TDA Progress Report 42–122 (1995)

  15. 15.

    www.vpiphotonics.com (2015)

  16. 16.

    Weber III, W.J.: Differential encoding for multiple amplitude and phase shift keying systems. IEEE Trans. Commun. 26(3), 385 (1978)

    Article  Google Scholar 

  17. 17.

    Pfau, T., Liu, X., Chandrasekhar, S.: Optimization of 16-ary quadrature amplitude modulation constellations for phase noise impaired channels. In: Proceedings on ECOC. Tu.3.A.6. (2011)

  18. 18.

    Krishnan, R., Graell i Amat, A., Eriksson, T., Colavolpe, G.: Constellation optimization in the presence of strong phase noise. IEEE Trans. Commun. 61(12), 5056 (2013)

    Article  Google Scholar 

  19. 19.

    Gordon, J.P., Mollenauer, L.F.: Phase noise in photonic communications systems using linear amplifiers. Opt. Lett. 15(23), 1351 (1990)

    Article  Google Scholar 

  20. 20.

    Xu, T., Jacobsen, G., Popov, S., Li, J., Friberg, A.T., Zhang, Y.: Analytical estimation of phase noise influence in coherent transmission system with digital dispersion equalization. Opt. Express 19(8), 7756 (2011)

    Article  Google Scholar 

  21. 21.

    Jacobsen, G., Xu, T., Popov, S., Li, J., Friberg, A.T., Zhang, Y.: Receiver implemented RF pilot tone phase noise mitigation in coherent optical nPSK and nQAM systems. Opt. Express 19(15), 14487 (2011)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Miu Yoong Leong.

Additional information

This work was supported in part by EU project GRIFFON under Grant 324391 and in part by Vetenskapsrådet under Grant 0379801.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leong, M.Y., Larsen, K.J., Jacobsen, G. et al. Low-complexity BCH codes with optimized interleavers for DQPSK systems with laser phase noise. Photon Netw Commun 33, 328–333 (2017). https://doi.org/10.1007/s11107-016-0645-0

Download citation

Keywords

  • Optical fiber communications
  • Error correction codes
  • Block codes
  • Phase noise
  • Cycle slips