Skip to main content
Log in

A Q-band radio-over-fiber system for distribution of uncompressed high-definition video signals

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

A Q-band radio-over-fiber (RoF) system for transmission of uncompressed high-definition (HD) video signals is proposed and demonstrated. Three key photonic technologies are employed, i.e., the dispersion compensation based on a polarization modulator and a polarizer in the transmitter, the RF carrier extraction based on injection-locked optoelectronic oscillator and the frequency downconversion based on cascaded external modulations in the receiver. A proof-of-concept experiment is carried out. Results show that the proposed system supports 20-km wired and 0.5-m wireless distribution of uncompressed HD video signal. The cooperation of two antennas is also demonstrated, which provides a preliminary demonstration of intelligent RoF system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cisco Inc., Cisco visual network index: global mobile data traffic forecast update, 2014–2019, 3 Feb (2015)

  2. IEEE STD 802.15.3C-2009. IEEE standard for information technology—local and metropolitan area networks—specific requirements—part 15.3: amendment 2: millimeter-wave-based alternative physical layer extension. 2009

  3. STANDARD ECMA-387. High Rate 60 GHz PHY, MAC and HDMI PALs, 2nd Edition. 2010

  4. IEEE STD 802.11AD-2012. IEEE standard for information technology—telecommunications and information exchange between systems—local and metropolitan area networks—specific requirements—part 11: wireless medium access control (MAC) and physical layer (PHY) specifications—amendment 3: enhancements for very high throughput in the 60 GHz Band. 2012

  5. Song, H.J., Nagatsuma, T.: Present and future of terahertz communications. IEEE Trans. THz Sci. Technol. 1(1), 256–263 (2011)

    Article  Google Scholar 

  6. Thomas, V.A., Ghafoor, S., El-Hajjar, M., Hanzo, L.: The “Rap” on ROF: radio over fiber using radio access point for high data rate wireless personal area networks. IEEE Microw. Mag. 16(9), 64–78 (2015)

    Article  Google Scholar 

  7. Xu, K., Wang, R., Dai, Y., Yin, F., Li, J., Ji, Y., Lin, J.: Microwave photonics: radio-over-fiber links, systems, and applications. Photon. Res. 2(4), B54–B63 (2014)

    Article  Google Scholar 

  8. Al-Raweshidy, H., Komaki, S.: Radio Over Fiber Technologies for Mobile Communications Networks. Artech House, Norwood (2002)

    Google Scholar 

  9. Ho, C.-H., Sambaraju, R., Jiang Jr., W., Lu, T.H., Wang, C.-Y., Yang, H., Lee, W.-Y., Lin, C.-T., Wei, C.-C., Chi, S.: 50-Gb/s radio-over-fiber system employing MIMO and OFDM modulation at 60 GHz. In: Proceedings of Optical Fiber Communications Conference (OFC), Washington, DC, OM2B.3 (2012)

  10. Hsueh, Y.T., Liu, C., Fan, S.H., Yu, J., Chang, G.K.: A novel full-duplex testbed demonstration of converged all-band 60-GHz radio-over-fiber access architecture. In: Proceedings of Optical Fiber Communications Conference (OFC), Washington, DC, OTu2H.5 (2012)

  11. Beltrán, M., Deng, L., Pang, X., Zhang, X., Arlunno, V., Zhao, Y., Yu, X., Llorente, R., Liu, D., Monroy, I. Tafur: 38.2-Gb/s optical-wireless transmission in 75–110 GHz based on electrical OFDM with optical comb expansion. In: Proceedings of Optical Fiber Communications Conference (OFC), Washington, DC, OM2B.2 (2012)

  12. Pleros, N., Vyrsokinos, K., Tsagkaris, K., Tselikas, N.D.: A 60 GHz radio-over-fiber network architecture for seamless communication with high mobility. J. Lightwave Technol. 27(12), 1957–1967 (2009)

    Article  Google Scholar 

  13. Caballero, A., Zibar, D., Sambaraju, R., Martí, J., Monroy, I.T.: High-capacity 60 GHz and 75–110 GHz band links employing all-optical OFDM generation and digital coherent detection. J. Lightwave Technol. 30(1), 147–155 (2012)

    Article  Google Scholar 

  14. Shao, T., Beltrán, M., Zhou, R., Anandarajah, P.M., Llorente, R., Barry, L.P.: 60 GHz radio over fiber system based on gain-switched laser. J. Lightwave Technol. 32(20), 3695–3703 (2014)

    Article  Google Scholar 

  15. Wang, H.M., Hong, W., Chen, J.X., Sun, B., Peng, X.M.: IEEE 802.11 aj (45GHz): a new very high throughput millimeter-wave WLAN system. China Commun. 11, 51–62 (2014)

    Article  Google Scholar 

  16. Schmuck, H.: Comparison of optical millimetre-wave system concepts with regard to chromatic dispersion. Electron. Lett. 31(21), 1848–1849 (1995)

    Article  Google Scholar 

  17. Park, J., Sorin, W., Lau, K.: Elimination of the fibre chromatic dispersion penalty on 1550 nm millimetre-wave optical transmission. Electron. Lett. 33(6), 512–513 (1997)

    Article  Google Scholar 

  18. Smith, G.H., Novak, D., Ahmed, Z.: Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators. IEEE Trans. Microw. Theory 45(8), 1410–1415 (1997)

    Article  Google Scholar 

  19. Lorattanasane, C., Kikuchi, K.: Design theory of long-distance optical transmission systems using midway optical phase conjugation. J. Lightwave Technol. 15(6), 948–955 (1997)

    Article  Google Scholar 

  20. Li, S., Zheng, X., Zhang, H., Zhou, B.: Compensation of dispersion-induced power fading for highly linear radio-over-fiber link using carrier phase-shifted double sideband modulation. Opt. Lett. 36(4), 546–548 (2011)

    Article  Google Scholar 

  21. Hraimel, B., Zhang, X., Mohamed, M., Wu, K.: Precompensated optical double-sideband subcarrier modulation immune to fiber chromatic-dispersion-induced radio frequency power fading. J. Opt. Commun. Netw. 1(4), 331–342 (2009)

    Article  Google Scholar 

  22. Zhang, H., Pan, S., Huang, M., Chen, X.: Polarization-modulated analog photonic link with compensation of the dispersion-induced power fading. Opt. Lett. 37(5), 866–868 (2012)

    Article  Google Scholar 

  23. Pan, S., Yao, J.: A frequency-doubling optoelectronic oscillator using a polarization modulator. IEEE Photon. Technol. Lett. 21(13), 929–931 (2009)

    Article  Google Scholar 

  24. Yao, X.S., Maleki, L.: Optoelectronic oscillator for photonic systems. IEEE J. Quantum Electron. 32(7), 1141–1149 (1996)

    Article  Google Scholar 

  25. Pan, S., Yao, J.: Optical clock recovery using a polarization-modulator-based frequency-doubling optoelectronic oscillator. J. Lightwave Technol. 27(16), 3531–3539 (2009)

    Article  Google Scholar 

  26. Gopalakrishnan, G.K., Burns, W.K., Bulmer, C.H.: Microwave-optical mixing in \(\text{ LiNbO }_{3}\) modulators. IEEE Trans. Microwave Theory Tech. 41(12), 2383–2391 (1993)

    Article  Google Scholar 

  27. Bohémond, C., Rampone, T., Sharaiha, A.: Performances of a photonic microwave mixer based on cross-gain modulation in a semiconductor optical amplifier. J. Lightwave Technol. 29(16), 2402–2409 (2011)

    Article  Google Scholar 

  28. Tang, Z., Zhang, F., Zhu, D., Zou, X., Pan, S.: A photonic frequency downconverter based on a single dual-drive Mach–Zehnder modulator. In: Proceedings of 2013 International Topical Meeting on Microwave Photonics (MWP), pp. 150–153 (2013)

  29. Tang, Z., Zhang, F., Pan, S.: Photonic microwave downconverter based on an optoelectronic oscillator using a single dual-drive Mach–Zehnder modulator. Opt. Express. 22(1), 305–310 (2014)

    Article  Google Scholar 

  30. Tang, Z., Pan, S.: Distribution of 1.5-Gbps HD video using beamforming-based radio over fiber system. In: Proceedings of Asia Communications and Photonics Conference (ACP), ATh3G. 6 (2013)

Download references

Acknowledgments

This work was supported in part by the National Basic Research Program of China (2012CB315705), the National Natural Science Foundation of China (61422108, 61527820) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilong Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Z., Pan, S. A Q-band radio-over-fiber system for distribution of uncompressed high-definition video signals. Photon Netw Commun 32, 179–187 (2016). https://doi.org/10.1007/s11107-016-0617-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-016-0617-4

Keywords

Navigation