Skip to main content
Log in

A resilient star-ring optical broadcast-and-select network with a centralized multi-carrier light source

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

This article presents a resilient star-ring optical broadcast-and-select network with a centralized multi-carrier light source (C-MCLS). It consists of a star part network and a ring part network. Optical carriers generated by the C-MCLS are broadcast to all network nodes, which select and utilize them for data transmission. Optical carrier distribution as well as data transmission and receiving are performed in the star part network. The ring part network is for fiber failure recovery. The network resilience property enables the design of a fast distributed failure recovery scheme to deal with single and multiple fiber failures. We introduce a fiber connection automatic protection switching (FC-APS) architecture that only consists of optical couplers and 1 × 2 optical switches for each network node. Based on the FC-APS architecture, we design a distributed failure recovery scheme to recover the carriers and data affected by fiber failures. The fiber failure detection and failure recovery operations are performed by each network node independently only using its local information. We evaluate the recovery time of the distributed failure recovery scheme compared with that of the centralized one. Numerical results show that the distributed scheme greatly reduces the recovery time compared to the centralized configuration in the recoveries of both single and multiple fiber failures. Optical power loss analysis and compensation of the recovery routes in the distributed scheme are also presented. We show the required number of optical amplifiers for the longest recovery route in the distributed scheme under different numbers of network nodes and fiber span lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kitayama K.-I., Miki T., Morioka T., Tsushima H., Koga M., Mori K., Araki S., Sato K.-I., Onaka H., Namiki S., Aoyama T.: Photonic network R&D activities in Japan-current activities and future perspectives. IEEE/OSA J. Lightw. Technol. 23(10), 3404–3418 (2005)

    Article  Google Scholar 

  2. Takara H., Ohara T., Mori K., Sato K., Yamada E., Inoue Y., Shibata T., Abe M., Morioka T., Sato K.-I.: More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing. IET Electron. Lett. 36(25), 2089–2090 (2000)

    Article  Google Scholar 

  3. Yamada E., Takara H., Ohara T., Sato K., Jinguji K., Inoue Y., Shibata T., Morioka T.: 106 channel × 10 Gbit/s, 640 km DWDM transmission with 25 GHz spacing with supercontinuum multi-carrier source. IET Electron. Lett. 37(25), 1534–1536 (2001)

    Article  Google Scholar 

  4. Mori K., Sato K., Takara H., Ohara T.: Supercontinuum lightwave source generating 50 GHz spaced optical ITU grid seamlessly over S-, C- and L-bands. IET Electron. Lett. 39(6), 544–546 (2003)

    Article  Google Scholar 

  5. Takara H., Ohara T., Sato K.: Over 1000 km DWDM transmission with supercontinuum multi-carrier source. IET Electron. Lett. 39(14), 1078–1079 (2003)

    Article  Google Scholar 

  6. Miyagawa Y., Yamamoto T., Masuda H., Abe M., Takahashi H., Takara H.: Over-10000-channel 2.5 GHz-spaced ultra-dense WDM light source. IET Electron. Lett. 42(11), 655–657 (2006)

    Article  Google Scholar 

  7. Takara H., Ohara T., Yamamoto T., Masuda H., Abe M., Takahashi H., Morioka T.: Field demonstration of over 1000-channel DWDM transmission with supercontinuum multi-carrier source. IET Electron. Lett. 41(5), 270–271 (2005)

    Article  Google Scholar 

  8. Ohara T., Takara H., Yamamoto T., Masuda H., Morioka T., Abe M., Takahashi H.: Over-1000-channel ultradense WDM transmission with supercontinnum multicarrier source. IEEE/OSA J. Lightw. Technol. 24(6), 2311–2317 (2006)

    Article  Google Scholar 

  9. Cai Y., Matsuura M., Oki E., Kishi N., Miki T.: Optical broadcast-and-select network architecture with centralized multi-carrier light source. IEICE Electron. Express 5(19), 796–801 (2008)

    Article  Google Scholar 

  10. Cai, Y., Oki, E., Matsuura, M., Kishi, N., Miki, T.: Optical broadcast-and-select network architecture with centralized multi-carrier light source. In: Proc. IEEE Int. Conf. on Commun. (ICC 2009) ONS-03-2, Dresden, Germany (2009)

  11. Maier M.: Metropolitan area WDM networks-an AWG based approach. Kluwer, Norwell (2003)

    Google Scholar 

  12. Kamiyama, N.: Comparison of single-hop WDM architectures for local and metropolitan area networks. In: Proceedings of Conference on Optical Network Design and Modeling 2005, pp. 260–271 (2005)

  13. Noguchi K., Koike Y., Tanabe H., Harada K., Matsuoka M.: Field trial of full-mesh WDM network (AWGSTAR) in metropolitan/local area. IEEE/OSA J. Lightw. Technol. 22(2), 329–336 (2004)

    Article  Google Scholar 

  14. Herzog M., Maier M., Wolisz A.: RINGOSTAR: an evolutionary AWG-based WDM upgrade of optical ring networks. IEEE/OSA J. Lightw. Technol. 23(4), 1637–1651 (2005)

    Article  Google Scholar 

  15. Scheutzow M., Seeling P., Maier M., Reisslein M.: WDM star subnetwork upgrade of optical ring networks for maximum spatial reuse under multicast traffic. IEEE J. Sel. Areas Commun. 25(3), 55–67 (2007)

    Article  Google Scholar 

  16. Sun, X., Wang, Z., Chan, C., Chen, L.: A novel star-ring protection architecture scheme for WDM passive optical access networks. In: Proceedings of Optical Fiber Communications Conference 2005, paper JWA53 (2005)

  17. Cai, Y., Matsuura, M., Kishi, N., Miki, T.: A novel star-ring optical regional network architecture with dynamic wavelength/waveband broadcast and select. In: Proc. 12th OptoElectronics and Communications Conference (OECC 2007) 12P-3, Yokohama, Japan, July 2007

  18. Cai, Y., Matsuura, M., Kishi, N., Miki, T.: Hybrid static–dynamic wavelength/waveband allocation scheme for novel broadcast and select star-ring optical regional network. In: Proc. 13th Asia-Pacific Conference on Communications (APCC 2007) FPM2-3-4, Bangkok, Thailand, Oct 2007

  19. Vasseur J.P., Pickavet M., Demeester P.: Network Recovery: Protection and Restoration of Optical, SONET-SDH, IP, and MPLS, pp. 131–200. Morgan Kaufumann, San Francisco (2004)

    Google Scholar 

  20. Somani A.K.: Survivability and Traffic Grooming in WDM Optical Networks, pp. 25–26. Cambridge University Press, New York (2005)

    Google Scholar 

  21. Saleh A.A.M., Simmons J.M.: Architectural principles of optical regional and metropolitan access networks. IEEE/OSA J. Lightw. Technol. 17(12), 2431–2448 (1999)

    Article  Google Scholar 

  22. Cai, Y., Matsuura, M., Kishi, N., Miki, T.: Modeling and architecture design of novel optical broadcast-and-select network with centralized multi-carrier light source. In: Proc. 13th OptoElectronics and Communications Conference (OECC 2008) P-81. Sydney, Australia, July 2008

  23. Ma X., Kuo G.S.: Optical switching technology comparison: optical MEMS vs. other technologies. IEEE Commun. Mag. 41(11), S16–S23 (2003)

    Google Scholar 

  24. Papadimitriou G.I., Papazoglou C., Pomportsis A.S.: Optical switching: switch fabrics, techniques, and architectures. IEEE/OSA J. Lightw. Technol. 21(2), 384–405 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueping Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, Y., Matsuura, M., Oki, E. et al. A resilient star-ring optical broadcast-and-select network with a centralized multi-carrier light source. Photon Netw Commun 20, 293–302 (2010). https://doi.org/10.1007/s11107-010-0271-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-010-0271-1

Keywords

Navigation