Skip to main content
Log in

A minimum distortion transmission scheme under combined effects of chromatic dispersion and SPM based on optical time-domain fractional Fourier transformation

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In this paper, an optical time-domain fractional Fourier transformation (FRFT) system is proposed to achieve the minimum distortion transmission under combined effects of chromatic dispersion and self-phase modulation (SPM). In the new method, the pulses operated as FRFT will propagate in a new domain, in which the waveform in time domain will keep nearly unchanged through the transmission. The novel method achieves a 400 km optical transmission for an optical pulse with the full width at the 1/e point of peak power of 80 ps without any dispersion compensation and the pulse offers a nice performance with negligible nonlinear distortion. Compared with the soliton communication, this scheme shows more advantages on linear and nonlinear distortions without strict restriction to input pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Secondini M., Forestieri E., Menyuk C.R.: A combined regular-logarithmic perturbation method for signal-noise interaction in amplified optical systems. J. Lightwave Technol. 27(16), 3358–3369 (2009)

    Article  Google Scholar 

  2. Cerutti I., Fumagalli A., Potasek M.J.: Effects of chromatic dispersion and self-phase modulation in multihop multirate WDM rings. IEEE Photon. Technol. Lett. 14(3), 411–413 (2002)

    Article  Google Scholar 

  3. Green A.G., Mitra P.P., Wegener L.G.L.: Effect of chromatic dispersion on nonlinear phase noise. Opt. Lett. 28(24), 2455–2457 (2003)

    Article  Google Scholar 

  4. Shen S., Chang C.-C., Sardesai H.P., Binjrajka V., Weiner A.M.: Effects of self-phase modulation on sub-500 fs pulse transmission over dispersion compensated fiber links. J. Lightwave Technol. 17(3), 452–461 (1999)

    Article  Google Scholar 

  5. Meleiro R., Buxens A., Fonseca D., Castro J., Andre P., Monteiro P.: Impact of self-phase modulation on in-band crosstalk penalties. IEEE Photon. Technol. Lett. 20(8), 644–646 (2008)

    Article  Google Scholar 

  6. Killey R.I., Mikhailov V., Appathurai S., Bayvel P.: Investigation of nonlinear distortion in 40-Gb/s transmission with higher order mode fiber dispersion compensators. J. Lightwave Technol. 20(12), 2282–2289 (2002)

    Article  Google Scholar 

  7. Binh L.N.: Linear and nonlinear transfer functions of single mode fiber for optical transmission systems. J. Opt. Soc. Am. B 26(7), 1564–1575 (2009)

    Article  MathSciNet  Google Scholar 

  8. Hatami-Hanza H., Mostofi A., Chu P.L.: A multilevel soliton communication system. J. Lightwave Technol. 15(1), 6–19 (1997)

    Article  Google Scholar 

  9. Bertillsson K., Andrekson P.A.: Numerical study of moderate distance high bit-rate alternating-amplitude soliton systems. J. Lightwave Technol. 14(3), 237–242 (1996)

    Article  Google Scholar 

  10. Xie C., Karlssom M., Andrekson P.A., Sunnerud H., Li J.: Influences of polarization-mode dispersion on soliton transmission systems. IEEE J. Sel. Top. Quantum Electron. 8(3), 575–590 (2002)

    Article  Google Scholar 

  11. Jannson T.: Real-time Fourier transformation in dispersive optical fibers. Opt. Lett. 8(4), 232–234 (1983)

    Article  Google Scholar 

  12. Nakazawa M., Hirooka T.: Distortion-free optical transmission using time-domain optical Fourier tranformation and transform-limited optical pulses. J. Opt. Soc. Am. B 22(9), 1842–1855 (2005)

    Article  Google Scholar 

  13. Hirooka T., Hagiuda K.-I., Kumakura T., Osawa K., Nakazawa M.: 160-Gb/s-600- km OTDM transmission using time-domain optical Fourier transformation. IEEE Photon. Technol. Lett. 18(24), 2647–2649 (2006)

    Article  Google Scholar 

  14. Pei S.-C., Ding J.-J.: Relations between gabor transforms and fractional fourier transforms and their applications for signal processing. IEEE Trans. Signal Process. 55(10), 4839–4850 (2007)

    Article  Google Scholar 

  15. Du, W.-C., Gao, X.-Q., Wang, G.-H.: Using FRFT to estimate target radial acceleration. In: Proceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recognition, Beijing, China, 2–4 Nov 2007

  16. Almeida L.B.: The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 42(11), 3084–3091 (1994)

    Article  Google Scholar 

  17. Brunel M. et al.: Fractional-order Fourier analysis for ultrashort pulse characterization. J. Opt. Soc. Am. A 24(6), 1641–1646 (2007)

    Article  Google Scholar 

  18. Li W., Qiao Y.J., Han Q.S., Zhang H.: A PMD-supported 100 Gb/s optical frequency-domain IM-DD transmission system. Chin. Opt. Lett. 7(8), 679–682 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Q., Li, W. & He, Q. A minimum distortion transmission scheme under combined effects of chromatic dispersion and SPM based on optical time-domain fractional Fourier transformation. Photon Netw Commun 20, 216–223 (2010). https://doi.org/10.1007/s11107-010-0262-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-010-0262-2

Keywords

Navigation