Skip to main content
Log in

On the design of multi-wavelength copy interconnects with reduced complexity

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

A multi-wavelength copy interconnect is a switching network capable of replicating a signal arriving at the input on a specific wavelength to one or more outputs possibly on different wavelengths. Such an interconnect can be useful in building optical multicast switches for wavelength division multiplexing (WDM) networks. In this article, we investigate, for the first time, the problem of designing copy networks that can simultaneously multicast input signals to a set of outputs while changing the wavelength of the replica according to the required routing pattern. We propose a novel multi-wavelength crossbar (MWX) switch that can switch an input signal on a specific wavelength to two different output wavelengths. The proposed MWX is used as a building block to construct two classes of multi-log2N copy networks, namely, baseline and Beneš interconnects. The design space of the proposed interconnect classes is characterized and their hardware complexity is analyzed. We show that the proposed interconnects are transparent to existing multicast routing algorithms, and present simple routing algorithms for routing of multicast requests over the proposed designs. Comparisons with existing designs confirm that the proposed interconnects require a smaller number of space switches and wavelength conversion processes as compared to most conventional copy networks. In particular, for a large number of wavelengths and for any number of fibers the proposed design requires 50% less switching elements as compared to best available designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hwang F.K., Jajszczyk A.: On nonblocking multiconnection networks. IEEE Trans. Commun. 34(10), 1038–1041 (1986)

    Article  MATH  Google Scholar 

  2. Yang Y.: A class of interconnection networks for multicasting. IEEE Trans. Comput. 47(8), 899–906 (1998)

    Article  MathSciNet  Google Scholar 

  3. Yang Y., Masson G.M.: The necessary conditions for clos-type nonblocking multicast networks. IEEE Trans. Comput. 48(11), 1214–1227 (1999)

    Article  MathSciNet  Google Scholar 

  4. Yang Y., Wang J.: A new self-routing multicast networks. IEEE Trans. Parallel Distrib. Syst. 10(12), 1299–1316 (1999)

    Article  Google Scholar 

  5. Lee T.T.: Nonblocking copy networks for multicast packet switching. IEEE JSAC 6(9), 1455–1467 (1988)

    Google Scholar 

  6. Turner J.: Design of broadcast packet switching networks. IEEE Trans. Commun. 36(6), 734–743 (1988)

    Article  Google Scholar 

  7. Mir N.F.: An efficient multicast approach in an ATM switching network for multimedia applications. J. Netw. Comput. Appl. 21(1), 31–39 (1998)

    Article  Google Scholar 

  8. Sahasrabuddhe L.H., Mukherjee B.: Light-tress: optical multicasting for improved performance in wavelength-routed networks. IEEE Commun. 37(2), 67–73 (1999)

    Article  Google Scholar 

  9. Iannone E., Listanti M., Sabella R.: Multicasting in optical transport networks. J. Opt. Commun. 19(3), 90–98 (1998)

    Google Scholar 

  10. Qiao, C., Jeong, M., Guha, A., Zhang, X., Wei, J.: WDM multicasting in IP over WDM networks. In: Proceedings of International Conference on Network Protocols (ICNP), pp. 89–96, Nov. (1999)

  11. Yang Y., Wang J., Qiao C.: Nonblocking WDM multicast switching networks. IEEE Trans. Parallel Distrib. Syst. 11(12), 1274–1287 (2000)

    Article  Google Scholar 

  12. Pankaj R.K.: Wavelength requirements for multicasting in all-optical networks. IEEE Trans. Commun. 50(1), 126–134 (2002)

    Article  Google Scholar 

  13. Wang Y., Yang Y.: Multicasting in a class of multicast-capable WDM networks. IEEE/OSA J. Lightw. Technol. 20(3), 350–359 (2002)

    Article  Google Scholar 

  14. Zhou C., Yang Y.: Wide-sense nonblocking multicast in a class of regular optical WDM networks. IEEE/ACM Trans. Netw. 7(3), 414–424 (1999)

    Article  Google Scholar 

  15. Malli, R., Zhang, X., Qiao, C.: Benefit of multicasting in all-optical WDM networks. In: Proceedings of Conference on All-Optical Networks, pp. 209–220, Nov. (1998)

  16. Maier G., Pattavina A.: Design of photonic rearrangeable networks with zero first-order switching-element-crosstalk. IEEE Trans. Commun. 49, 1268–1279 (2001)

    Article  Google Scholar 

  17. Jiang X., Shen H., Khander Md.M., Horiguchi S.: Blocking behaviors of crosstalk-free optical banyan networks on vertical stacking. IEEE/ACM Trans. Netw. 11(6), 982–992 (2003)

    Article  Google Scholar 

  18. Jiang X., Ho P.-H., Horiguchi S.: Performance modeling for all-optical photonic switches based on the vertical stacking of banyan network structures. IEEE J. Sel. Areas Commun. 23(8), 1620–1631 (2005)

    Article  Google Scholar 

  19. Deng, Y., Lee, T.T.: Crosstalk-free conjugate networks for optical multicast switching. IEEE/OSA J. Lightw. Technol. 24(10), (2006)

  20. Pan, D., Anand, V., Ngo, H.Q.: Cost-effective constructions for nonblocking WDM multicast switching networks. In: Proceedings of IEEE ICC 04, pp. 1801–05, (2004)

  21. Yang Y., Wang J.: Designing WDM optical interconnects with full connectivity by using limited wavelength conversion. IEEE Tran. Comput. 53(12), 1547–1556 (2004)

    Article  Google Scholar 

  22. Yang Y., Wang J.: Cost-effective designs of WDM optical interconnects. IEEE Tran. Parallel Distrib. Syst. 16(1), 51–66 (2005)

    Article  Google Scholar 

  23. Ngo H.Q., Pan D., Qiao C.: Constructions and Analyses of Nonblocking WDM switches based on arrayed waveguide grating and limited wavelegnth conversion. IEEE/ACM Trans. Netw. 14(1), 205–217 (2005)

    Article  Google Scholar 

  24. Hu W.S., Zeng Q.J.: Multicasting optical cross connects employing splitter-and-delivery switch. IEEE Photon. Technol. Lett. 10(7), 970–972 (1998)

    Article  Google Scholar 

  25. Ali M., Deogun J.S.: Power-efficient design of multicast wavelength-routed networks. IEEE JSAC 18(10), 1852–1862 (2000)

    Google Scholar 

  26. Hamza H.S., Deogun J.S.: Wavelength exchanging cross-connect (WEX)- a new class of photonic cross-connect architectures. IEEE/OSA J. Lightw. Technol. 24(3), 1101–1111 (2006)

    Article  Google Scholar 

  27. Uesaka K., Wong K.K.-Y., Marhic M.E., Kazovsky L.G.: Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments. IEEE J. Sel. Top. Quant. Electron. 8(3), 560–568 (2002)

    Article  Google Scholar 

  28. Chowdhury A., Hagness S.C., McCaughan L.: Simultaneous optical wavelength interchange with a two-dimensional second-order nonlinear photonic crystal. Opt. Lett. 25(11), 832–834 (2000)

    Article  Google Scholar 

  29. Danilewicz G., Kabacińskil W.: Wide-sense and strict-sense nonblocking operation of multicast multi-log2 N switching networks. IEEE Trans. Commun. 50, 1025–1036 (2002)

    Article  Google Scholar 

  30. Subramaniam S., Azizoglu M., Somani A.K.: All-optical networks with sparse wavelength conversion. IEEE/ACM Trans. Netw. 4(4), 544–557 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitham S. Hamza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamza, H.S. On the design of multi-wavelength copy interconnects with reduced complexity. Photon Netw Commun 19, 240–256 (2010). https://doi.org/10.1007/s11107-009-0229-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-009-0229-3

Keywords

Navigation