Skip to main content
Log in

A novel fault-tolerant multi-EPON system with sharing protection through bridge ONUs

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In the EPON, any failure of optical line terminal (OLT) or feeder fiber can halt the entire system. Many previous studies proposed dedicated protection architectures to protect the critical components, which results in high cost for deployment. To achieve high reliability and low-cost for deployment, this article proposes a novel fault-tolerant Multi-EPON system with cost-effective shared protection through Bridge ONUs. Under failures, the Bridge ONU controls the faulty EPON, plays the role of OLT and the transmission of faulty EPONs are restored by relaying to other interconnected adjacent EPONs. The minimum hop-count relay algorithm and the relay window mechanism are also proposed for the Multi-EPON system to efficiently help data relaying to the central office (CO). Furthermore, the one-wait dynamic bandwidth allocation enables the controller of affected Passive Optical Networks (PONs) to obtain more up-to-date buffer information from each ONU in order to enhance overall system performance. The simulation results show that the proposed Multi-EPON system can provide high system performance for different failure situations in terms of throughput, average delay, maximum delay, and expedited forwarding (EF) jitter, especially in high traffic loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kramer G., Mukherjee B., Pesavento G.: Ethernet PON (Ethernet PON): design and analysis of an optical access network. Photonic Netw. Commun. 3(3), 307–309 (2001). doi:10.1023/A:1011463617631

    Article  Google Scholar 

  2. Grossman, D.: New terminology and clarifications for diffserv. IETF RFC 3260 (2002)

  3. ITU-T Recommendation G.983.1, Broadband optical access systems based on Passive Optical Networks (PON) (2005)

  4. Kim, Y.M., Choi, J.Y., Ryou, J.H., Baek, H.M., Lee, O.S., Park, H.S., et al.: Cost effective protection architecture to provide diverse protection demands in Ethernet passive optical network. In: IEEE International Conference on Communication Technology, Beijing, China, pp. 721–724 (March 2003)

  5. Abdullah, M.K., P’ng, W.T., Lau, P.W., Tee, E.R.: FTTH access network protection using a switch. In: Proceedings of APCC’2003, Penang, Malaysia, pp. 1219–1222 (2003)

  6. Nadarajah N., Wong E., Attygalle M., Nirmalathas A.: Protection switching and local area network emulation in passive optical networks. IEEE/OSA. J. Lightwave Technol. 24(5), 1955–1967 (2006). doi:10.1109/JLT.2006.872275

    Article  Google Scholar 

  7. Zhao, X., Chen, X., Fu, X.: A novel protection switching scheme for PONs with ring plus tree topology. In: Proceedings of the SPIE, vol. 6022, pp. 949–956 (December 2005)

  8. Hossain, D., Erkan, H., Dorsinville, R., Ali, M., Shami, S., Assi, C.: Protection for a ring-based EPON architecture. In: IEEE International Conference on Broadband Networks, Boston, Massachusetts, USA, pp. 1548–1553 (October 2005)

  9. IEEE Standard for Local and metropolitan area networks: Media Access Control (MAC) Bridges, IEEE Std. 802.1D-2004 (Revision of IEEE Std. 802.1D-1998). IEEE Computer Society (2004)

  10. Assi C., Ye Y., Dixit S., Ali M.A.: Dynamic bandwidth allocation for quality-of-service over Ethernet PONs. IEEE J. Select. Area. Commun. 21(9), 1467–1477 (2003). doi:10.1109/JSAC.2003.818837

    Article  Google Scholar 

  11. Kramer G., Mukherjee B., Pesavento G.: Interleaved polling with adaptive cycle time (IPACT): a dynamic bandwidth distribution scheme in an optical access network. Photonic Netw. Commun. 4(1), 89–107 (2002). doi:10.1023/A:1012959023043

    Article  Google Scholar 

  12. Kramer G., Mukherjee B., Dixit S., Ye Y., Hirth R.: Supporting differentiated classes of service in Ethernet passive optical networks. J. Opt. Netw. 1(8), 280–298 (2002)

    Google Scholar 

  13. Son, K., Ryu, H., Chong, S., Yoo, T.: Dynamic bandwidth allocation schemes to improve utilization under nonuniform traffic in Ethernet passive optical networks. IEEE International Conference on Communications, Paris, France, pp. 1766–1770 (June 2004)

  14. Chen B., Chen J., He S.: Efficient and fine scheduling algorithm for bandwidth allocation in Ethernet passive optical networks. IEEE J. Select. Topics Quantum Electron. 12(4), 653–660 (2006). doi:10.1109/JSTQE.2006.876607

    Article  Google Scholar 

  15. Hwang I.S., Shyu Z.D., Ke L.Y., Chang C.C.: A novel early DBA mechanism with prediction-based fair excessive bandwidth reallocation scheme in EPON. Comput. Commun. 31(9), 1814–1823 (2008). doi:10.1016/j.comcom.2007.11.021

    Article  Google Scholar 

  16. Zheng J.: Efficient bandwidth allocation algorithm for Ethernet passive optical networks. IEE Proc. Commun. 153(3), 464–468 (2006). doi:10.1049/ip-com:20050358

    Article  Google Scholar 

  17. Bai X., Shami A., Assi C.: On the fairness of dynamic bandwidth allocation schemes in Ethernet passive optical networks. Comput. Commun. 29(11), 2123–2135 (2006). doi:10.1016/j.comcom.2006.01.005

    Article  Google Scholar 

  18. Shami A., Xiaofeng B., Assi C.M., Ghani N.: Jitter performance in Ethernet passive optical networks. IEEE/OSA. Journal of Lightwave Technology 23(4), 1745–1753 (2005). doi:10.1109/JLT.2005.844510

    Article  Google Scholar 

  19. Sherif S.R., Hadjiantonis A., Ellinas G., Assi C., Ali M.A.: A novel decentralized Ethernet-based PON access architecture for provisioning differentiated QoS. IEEE/OSA. J. Lightwave Technol. 22(11), 2483–2497 (2004). doi:10.1109/JLT.2004.836757

    Article  Google Scholar 

  20. Kramer G., Mukherjee B., Dixit S., Ye Y., Hirth R.: On supporting differentiated classes of service in EPON-based access networks. J. Opt. Netw. 1(8/9), 1–20 (2002)

    Google Scholar 

  21. Willinger, W., Taqqu, M.S., Erramilli, A.: A Bibliographical Guide to Self-similar Traffic and Performance Modeling for Modern High-speed Networks. Stochastic Networks: Theory and Applications, Royal Statistical Society Lecture Notes Series, vol. 4, pp. 339–366. Oxford University Press (1996)

  22. Bai, X., Shami, A.: Modeling self-similar traffic for network simulation. Technical report, NetRep-2005–01 (2005)

  23. Naser H., Mouftah H.T.: A joint-ONU interval-based dynamic scheduling algorithm for Ethernet passive optical networks. IEEE/ACM Trans. Netw. 14(4), 889–899 (2006)

    Article  Google Scholar 

  24. ITU-T Recommendation G.114, One-way transmission time (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I-Shyan Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, IS., Shyu, ZD. & Ke, LY. A novel fault-tolerant multi-EPON system with sharing protection through bridge ONUs. Photon Netw Commun 18, 24–38 (2009). https://doi.org/10.1007/s11107-008-0167-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-008-0167-5

Keywords

Navigation