Skip to main content
Log in

On the performance of different node configurations in multi-fiber optical packet-switched networks

  • Original Article
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

With the development of optical packet-switching (OPS) technologies, multi-fiber OPS networks will play an important role in the future data transmissions. In such networks, instead of constructing some extremely expensive node configurations with strictly non-blocking switching function, a more practical solution is multi-board switches that contain a number of small-sized switching boards. In this article, we have evaluated the performance of several different multi-board switches, based on the following two main objectives: (i) better understanding the effects of different connection schemes between switching boards and optical buffers and (ii) investigating possible schemes for achieving comparable performance to that of the ideal, strictly non-blocking switches. Extensive simulation results have shown that unlike circuit-switched net- works, multi-board OPS cannot easily perform comparably to the strictly non-blocking switch by having slightly more fibers per link. Also, such a problem can be tackled by several different approaches. The most efficient one is to equip the switch with more buffers rather than to increase the switching-board size or to enhance the buffer sharing between different switching boards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramaswami R., Sivarajan K.N.: Optical Networks: A Practical Perspective. Morgan Kaufmann Publishers (1998)

  2. Ramaswami R. (2002) Optical fiber communication: from transmission to networking. IEEE Commun. Mag. 40(5): 138–147

    Article  Google Scholar 

  3. Hunter D.K., Andonovic I. (2000) Approaches to optical Internet packet switching. IEEE Commun. Mag. 38(9): 116–122

    Article  Google Scholar 

  4. Monacos S.P., Morookian J.M., Davis L., Bergman L., Forouhar S., Sauer J.R. (1996) All-optical WDM packet networks. IEEE/OSA J. Lightwave Technol. 14(6): 1356–1370

    Article  Google Scholar 

  5. Chan V.W.S., Hall K.L., Modiano E., Rauschenbach K.A. (1998) Architecture and technologies for high-speed optical data networks. IEEE/OSA J. Lightwave Technol. 16(12): 2146–2168

    Article  Google Scholar 

  6. Chlamtac I., et al. (1996) CORD: Contention resolution by delay lines. IEEE J. Select. Areas Commun. 14(5): 1014–1029

    Article  Google Scholar 

  7. Hunter D.K., Chia M.C., Andonovic I. (1998) Buffering in optical packet switches. IEEE/OSA J. Lightwave Technol. 16(12): 2081–2094

    Article  Google Scholar 

  8. Hunter D.K., Cornwell W.D., Gilfedder T.H., Franzen A., Andonovic I. (1998) SLOB: A switch with large optical buffers for packet switching. IEEE/OSA J. Lightwave Technol. 16(10): 1725–1736

    Article  Google Scholar 

  9. Diao J., Chu P.L. (1999) Analysis of partially shared buffering for WDM optical packet switching. IEEE/OSA J. Lightwave Technol. 17(12): 2461–2469

    Article  Google Scholar 

  10. Danielsen S.L., Hansen P.B., Stubkjaer K.E. (1998) Wavelength conversion in optical packet switching. IEEE/OSA J. Lightwave Technol. 16(9): 2095–2108

    Article  Google Scholar 

  11. Ramamurthy B., Mukherjee B.3 (1998) Wavelength conversion in WDM networking. IEEE J. Select. Areas Commun. 16(7): 1061–107

    Article  Google Scholar 

  12. Sudb A.S., Bjrnstad S. (2003) Scalable optical switch structure based on tunable wavelength converters and arrayed waveguide grating routers. OSA J. Optical Network 2(9): 340–349

    Google Scholar 

  13. Ciaramella E., Contestabile G., Curti F., D’Ottavi A. (2000) Fast tunable wavelength conversion for all-optical packet switching. IEEE Photonics Technol. Letts. 12(10): 1361–1363

    Article  Google Scholar 

  14. Qin X., Yang Y. (2002) Nonblocking WDM switching networks with full and limited wavelength conversion. IEEE Trans. Commun. 50(12): 2032–2041

    Article  Google Scholar 

  15. El-Bawab T.S., Shin J. (2002) Optical packet switching core networks: Between vision and reality. IEEE Commun. Mag. 40(9): 60–65

    Article  Google Scholar 

  16. Yao S., Mukherjee B., Yoo S.J.B., Dixit S. (2003) A unified study of contention-resolution schemes in optical packet-switched networks. IEEE/OSA J. Lightwave Technol. 21(3): 672–683

    Article  Google Scholar 

  17. Marsan M.A., Fumagalli A., Leonardi E., Neri F., Poggiolini P. (1998) Daisy: A scalable all-optical packet network with multifiber ring topology. Comput. Networks ISDN Syst. 30(11): 1065–1082

    Article  Google Scholar 

  18. Li L., Somani A.K. (2000) A new analytical model for multifiber WDM networks. IEEE J. Select. Areas Commun. 18(10): 2138–2145

    Article  Google Scholar 

  19. Gipser T., Jager H.A., Rapp L. (1998) Broadcasting, scalability, and reconfigurability aspects in an all-optical network architecture. Fiber Integrat. Optics 17(1): 21–40

    Article  Google Scholar 

  20. Leung Y., Xiao G., Hung K. (2002) Design of node configuration for all-optical multi-fiber networks. IEEE Trans. Commun. 50(1): 135–145

    Article  Google Scholar 

  21. Harai H., Wada N., Kubota F., Chujo W. (2002) Contention resolution using multi-stage fiber delay line buffer in a photonic packet switch. Proc. of IEEE ICC ’02 (New York, NY, USA) 5: 2843–2847

    Google Scholar 

  22. Jiang S., Hu G., Liew S.Y., Chao H.J. (2005) Scheduling algorithm for shared fiber-delay-line optical packet switches-part II: the three-stage clos-network case. IEEE/OSA J. Lightwave Technol. 23(4): 1601–1609

    Article  Google Scholar 

  23. Li Y., Xiao G., Ghafouri-Shiraz H. (2004) On the benefits of multifiber optical packet switch. Microwave Optical Technol Letts 43(5): 376–378

    Article  Google Scholar 

  24. Luo Y., Ansari N. (2003) Performance evaluation of survivable multifiber WDM networks. Proc. IEEE Globecom ’03 (San Francisco, CA, USA) 5, 2524–2528

    Google Scholar 

  25. Cao X., Anand V., Xiong Y., Qiao C. (2003) Performance evaluation of wavelength band switching in multi-fiber all-optical networks. Proc. IEEE INFOCOM ’03 (San Francisco, CA, USA) 3, 2251–2261

    Google Scholar 

  26. Nagatsu N., Watanabe A., Okamoto S., Sato K. Performance and node architecture of WDM multiple fiber ring networks. Proc. IEEE ICC’ 98 (Atlanta, GA, USA) 931–936 (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaoxi Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Xiao, G. & Ghafouri-Shiraz, H. On the performance of different node configurations in multi-fiber optical packet-switched networks. Photon Netw Commun 14, 11–22 (2007). https://doi.org/10.1007/s11107-006-0039-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-006-0039-9

Keywords

Navigation