Skip to main content
Log in

Information on the Annual Report of the Ukrainian Commission of Phase Diagrams and Thermodynamics (2023)

  • INFORMATION. CHRONICLE
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Since 1994, the Ukrainian Phase Diagrams and Thermodynamics Commission has been a part of the Alloy Phase Diagram International Commission (APDIC), in which 18 representatives from 26 countries of the world participate in its activities. The exchange of scientific information and coordination of activities of the international scientific community, mainly in the field of phase diagrams and thermodynamics, promoting the application of phase diagrams in industry and fundamental science, and dissemination of the methodology of critical evaluation of scientific information in world science are among the priority tasks of the APDIC’s activity. As part of the annual report of the Ukrainian Commission, at the APDIC meeting on June 30, 2023, information was presented on the results of the activities of Ukrainian scientists in this field in 2022. It is presented in the form of a table with data on the studied systems and obtained results and a list of references to published papers. Scientists from the Frantsevich Institute for Problems of Materials Science (National Academy of Sciences of Ukraine, Kyiv), Taras Shevchenko National University of Kyiv (Ministry of Education and Science of Ukraine, Kyiv), and Donbas State Engineering Academy (Ministry of Education and Science of Ukraine, Kramatorsk) provided relevant information to the Ukrainian Commission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Korniyenko, K. Meleshevich, A. Samelyuk, V. Sobolev, and L. Kriklya, “Phase equilibrium in the Al– Ti–Cr system during solidification,” J. Phase Equilib. Diff., 43, No. 4, 427–447 (2022). https://doi.org/10.1007/s11669-022-00983-4.

    Article  CAS  Google Scholar 

  2. V. Witusiewicz, A. Bondar, U. Hecht, and T.Y. Velikanova, “Phase equilibrium in binary and ternary systems with chemical and magnetic ordering,” J. Phase Equilib. Diff., 32, No. 4, 329–349 (2011). https://doi.org/10.1007/s11669-011-9910-1.

    Article  CAS  Google Scholar 

  3. A.M. Storchak, T.Ya. Velikanova, V.M. Petyukh, A.V. Samelyuk, V.B. Sobolev, and M.V. Bulanova, “Phase equilibrium in the Ti–CuTi2–CuZr2–Zr region of the ternary Cu–Ti–Zr system,” Powder Metall. Met. Ceram., 61, No. 5–6, P. 337–349 (2022). https://doi.org/10.1007/s11106-022-00321-w.

    Article  CAS  Google Scholar 

  4. I. Fartushna, A. Samelyuk, A. Koval, K. Meleshevich, I. Tikhonova, and M. Bulanova, “Ho–Co and Ho–Co–Fe phase diagrams,” Calphad, 79, 102495 (2022). https://doi.org/10.1016/j.calphad.2022.102495.

    Article  CAS  Google Scholar 

  5. Iu.V. Fartushna and M.V. Bulanova, “Prediction of the REM-Fe-Co Phase diagrams in meltingcrystallization region,” Powder Metall. Met. Ceram., 61, No. 1–2. 77–106 (2022). https://doi.org/10.1007/s11106-022-00297-7.

  6. O.M. Sydorchuk, O.M. Myslyvchenko, K.O. Gogaev, and Ye. Hongguang, “Structure and properties of forged steel with regulated austenite transformation,” Mater. Sci., 58, No. 1, 119–125 (2022). https://doi.org/10.1007/s11003-022-00639-1.

  7. A.S. Dudnyk, V.S. Sudavtsova, L.O. Romanova, V.G. Kudin, M.I. Ivanov, and M.O. Shevchenko, “Thermodynamic properties of alloys and phase equilibrium in the Cu–Yb system,” Powder Metall. Met. Ceram., 61, No. 5–6, 350–359 (2022). https://doi.org/10.1007/s11106-022-00325-6.

    Article  CAS  Google Scholar 

  8. M.Yu. Smyrnova-Zamkova, O.V. Dudnik, O.I. Bykov, O.K. Ruban, and O.I. Khomenko, “Changes in the properties of ultrafine Al2O3–ZrO2–Y2O3–CeO2 powders after heat treatment in the range 400–1450°C,” Powder Metall. Met. Ceram., 60, No. 9–10, 519–530 (2022). https://doi.org/10.1007/s11106-022-00265-1.

    Article  CAS  Google Scholar 

  9. M.I. Grechanyuk, I.M. Grechanyuk, Y.N. Yevterev, V.G. Grechanyuk, T.O. Prikhna, G.A. Bagliuk, V.I. Hots, O.V. Khomenko, O.V. Dudnik, and O.V. Matsenko, “Electron-beam and plasma oxidationresistant and thermal-barrier coatings deposited on turbine blades using cast and powder Ni(Co)CrAlY(Si) alloys produced by electron beam melting. III. Formation, structure, and chemical and phase composition of thermal-barrier Ni(Co)CrAlY/ZrO2–Y2O3 coatings produced by physical vapor deposition in one process cycle,” Powder Metall. Met. Ceram., 61, No. 5–6, 328–336 (2022). https://doi.org/10.1007/s11106-022-00320-x.

    Article  CAS  Google Scholar 

  10. O.V. Dudnik, S.M. Lakiza, M.I. Grechanyuk, V.P. Red’ko, I.O. Marek, A.O. Makudera, V.B. Shmibelsky, and O.K. Ruban, “Composite ceramics for thermal-barrier coatings produced from zirconia doped with rare earth oxides,” Powder Metall. Met. Ceram., 61, No. 7–8, 441–450 (2022). https://doi.org/10.1007/s11106-023- 00331-2.

    Article  CAS  Google Scholar 

  11. O.A. Korniienko, S.V. Yushkevych, O.I. Bykov, A.V. Samelyuk, and Yu.M. Bataiev, “Phase equilibrium in binary La2O3–Dy2O3 and ternary CeO2–La2O3–Dy2O3 systems,” J. Europ. Ceram. Soc. 2022. Vol. 42, No. 13. P. 5820-5830. https://doi.org/10.1016/j.jeurceramsoc.2022.06.045.

    Article  CAS  Google Scholar 

  12. O.A. Korniienko, S.V. Yushkevych, O.I. Bykov, A.V. Samelyuk, Yu.M. Bataiev, and M.V. Zamula, “Phase relation studies in the CeO2–La2O3–Ho2O3 system at a temperature of 1500°C,” Mater. Today Comm. 2023. Vol. 35. P. 105789. https://doi.org/10.1016/j.mtcomm.2023.105789.

  13. O.A. Kornienko, S.V. Yushkevych, O.I. Bykov, A.V. Samelyuk, Yu.M. Bataiev, and M.V. Zamula, “Phase equilibrium in the ternary CeO2–La2O3–Yb2O3 system at 1500°C,” Sol. St. Phenomena, 331, 159–172 (2022). https://doi.org/10.4028/p-4000g3.

    Article  Google Scholar 

  14. Yu.V. Yurchenko, O.A. Kornienko, O.I. Bykov, A.V. Samelyuk, S.V. Yushkevych, Yu.M. Bataiev, and M.V. Zamula, “Phase equilibrium in the ZrO2–HfO2–Sm2O3 system at 1500°C,” Chem. Thermodyn. Thermal Analysis,” 8, 100093 (2022). https://doi.org/10.1016/j.ctta.2022.100093.

  15. O.S. Roik, O.M. Yakovenko, Ya.O. Kashirina, V.P. Kazimirov, V.E. Sokol’skii, M.Yu. Rebenko, S.M. Galushko, and N.V. Golovataya, “The short-range order in liquid Al–Co–Sn alloys,” Phys. Chem. Liquids, 60, 625–635 (2022). https://doi.org/10.1080/00319104.2021.2025372.

    Article  CAS  Google Scholar 

  16. Y.O. Kashyrina, A.S. Muratov, V.P. Kazimirov, and O.S. Roik, “X-ray diffraction study and molecular dynamic simulation of liquid Al–Cu alloys: a new data and interatomic potentials comparison,” J. Molecular Modeling,” 28, No. 7, Article 203 (2022). https://doi.org/10.1007/s00894-022-05181-0.

  17. O. Yakovenko, Y. Kashyrina, V. Kazimirov, V. Sokol’skii, N. Golovataya, S. Galushko, O. Roik, “Structure of liquid Al–Ni–Sn,” Mater. Today: Proc., 62, No. 15, 7660–7663 (2022). https://doi.org/10.1016/j.matpr.2022.02.491.

  18. I.M. Kirian, A.D. Rud, O.S. Roik, V.P. Kazimirov, O.M. Yakovenko, and A.M. Lakhnik, “Local atomic structure of liquid Al87Mg13 alloy. J. Non-Crystall. Sol., 586, 121562 (2022). https://doi.org/10.1016/j.jnoncrysol.2022.121562.

    Article  CAS  Google Scholar 

  19. M. Turchanin, P. Agraval, L. Dreval, A. Vodopyanova, V. Korsun, “Mixing enthalpy of the Co–Ti–Hf liquid alloys and regularities of the function change in the row of the ternary (Co, Ni, Cu)–Ti–Hf glassforming melts,” Mater. Today: Proc. 62, 7681–7685 (2022). https://doi.org/10.1016/j.matpr.2022.03.130.

    Article  CAS  Google Scholar 

  20. L. Dreval, V. Korsun, P. Agraval, A. Vodopyanova, and M. Turchanin, “Interaction of the components in liquid glass-forming Fe–Hf–Ni alloys,” J. Chem. Thermodyn., 173, No. 10, 106851 (2022). https://doi.org/10.1016/j.jct.2022.106851.

  21. M.A. Turchanin, L.O. Dreval, P.G. Agraval, V.A. Korsun, and A.O. Vodopyanova, “Interaction of components in glass-forming melts of iron and nickel with titanium, zirconium, and hafnium. I. Mixing enthalpies of liquid alloys,” Powder Metall. Met. Ceram., 60, No. 9–10, 617–625 (2022). https://doi.org/10.1007/s11106-022-00274-0.

    Article  CAS  Google Scholar 

  22. L. Dreval, V. Korsun, P. Agraval, M. Turchanin, and A. Vodopyanova, “Thermodynamic mixing functions of the Fe–Ni–Zr liquid alloys,” Mater. Today: Proc., 62, 7698–7702 (2022). https://doi.org/10.1016/j.matpr.2022.03.172.

    Article  CAS  Google Scholar 

  23. Ternary Alloys: A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams, Materials Science International, Stuttgart, Vol. 21, Selected Al–Fe–X Ternary Systems for Industrial Applications; F. Stein, M. Palm (Eds.), L. Dreval, O. Dovbenko, and S. Ilienko (Associate Eds.), pp. 596. ISBN 978-3-932120-51-0.

  24. O. Tymoshenko, A. Bondar, and O. Dovbenko, Aluminium–Carbon–Iron. Selected Al–Fe–X Ternary Systems for Industrial Applications, Vol. 21, Materials Science International, Stuttgart (2022), pp. 51–72.

  25. K. Korniyenko and L. Dreval, Aluminium–Chromium–Iron. Selected Al–Fe–X Ternary Systems for Industrial Applications, Vol. 21, Materials Science International Stuttgart (2022), pp. 100–146.

  26. G. Cacciamani, L. Fenocchio, and L. Dreval, Aluminium–Iron–Nickel. Selected Al–Fe–X Ternary Systems for Industrial Applications, Vol. 21, Materials Science International, Stuttgart (2022), pp. 266–314.

  27. O. Kubaschewski, R. Schmid-Fetzer, L. Rokhlin, L. Cornishn, O. Fabrichnaya, and L. Dreval, Aluminium– Iron–Oxygen. Selected Al–Fe–X Ternary Systems for Industrial Applications, Vol. 21, Materials Science International, Stuttgart (2022), pp. 315–351.

  28. R. Schmid-Fetzer, V. Tomashyk, and L. Dreval Aluminium–Iron–Phosphorus. Selected Al–Fe–X Ternary Systems for Industrial Applications, Vol. 21, Materials Science International, Stuttgart (2022), pp. 352–367.

  29. X. Li, Sh. Liu, Y. Du, M. Turchanin, and L. Dreval, Aluminium–Iron–Silicon. Selected Al–Fe–X Ternary Systems for Industrial Applications, Vol. 21, Materials Science International, Stuttgart (2022), pp. 381–436.

  30. A. Bondar, O. Tymoshenko, and O. Dovbenko, Aluminium–Iron–Tantalum. Selected Al–Fe–X Ternary Systems for Industrial Applications, Vol. 21, Materials Science International, Stuttgart (2022), pp. 447–473.

  31. F. Stein and K. Korniyenko, Aluminium–Iron–Titanium. Selected Al–Fe–X Ternary Systems for Industrial Applications, Vol. 21, Materials Science International, Stuttgart (2022), pp. 474–515.

  32. K. Korniyenko, Aluminium–Iron–Vanadium. Selected Al–Fe–X Ternary Systems for Industrial Applications, Vol. 21, Materials Science International, Stuttgart (2022), pp. 516–536.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Turchanin.

Additional information

Translated from Poroshkova Metallurgiya, Vol. 62, Nos. 7–8 (552), pp. 141–148, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turchanin, M.A., Korniyenko, K.Y. & Velikanova, T.Y. Information on the Annual Report of the Ukrainian Commission of Phase Diagrams and Thermodynamics (2023). Powder Metall Met Ceram 62, 496–502 (2023). https://doi.org/10.1007/s11106-024-00412-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-024-00412-w

Keywords

Navigation