Skip to main content
Log in

High-Energy Mechanical Grinding to Produce Cr2AlC and Ti2AlC Max Phases

  • THEORY, PRODUCTION TECHNOLOGY, AND PROPERTIES OF POWDERS AND FIBERS
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

We have developed a method for producing single-phase Cr2AlC and Ti2AlC MAX phases using mechanical activation in a planetary-ball mill, followed by heat treatment of the mechanically activated mixture in the temperature range 800–1150°C. The specific surface area of the Cr2AlC and Ti2AlC MAX phases approximately equaled 3 m2/g. An Al86Cr14 intermetallic phase emerged in grinding of the 2Cr–Al–C powder mixture. The brittle Al86Cr14 phase promoted better refinement of all components and gave rise to an X-ray amorphous mixture. Gradual heating of this mixture in the temperature range 800–1150°C produced a single-phase carbide: Cr2AlC MAX phase. In grinding of the 2Ti–Al–C powder mixture, a mechanically induced self-propagating synthesis (MSS) reaction occurred to form a mixture of the Ti2AlC MAX phase and titanium carbide TiC. The ratio between the amounts of the MAX phase and titanium carbide depended on the grinding conditions. The grinding rate was reduced to produce a 70 wt.% Ti2AlC and 30 wt.% TiC mixture. The MSS reaction does not take place in grinding of the 2Cr + Al + C mixture because the rule that △H/Cp (the ratio of the formation enthalpy to the specific heat) is to be more than 2000 K does not hold for this system. The significant plastic deformation of the titanium powder when ground in the presence of carbon and the thermodynamically favored formation of both Ti2AlC and titanium carbide (△H/Cp more than 2000 K) promote the MSS reaction. A virtually single-phase powder, 95 wt.% Ti2AlC MAX phase, with impurities of TiC and AlTi intermetallic was produced by heating a mechanically activated mixture of titanium, titanium hydride, aluminum, and thermally expanded graphite. Titanium hydride in this mixture prevents the Ti + C = TiC MSS reaction. Titanium hydride reduces the MSS reaction rate, thus inhibiting the formation of titanium carbide and promoting a greater amount of the Ti2AlC MAX phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. M.W. Barsoum and T. El-Raghy, “The MAX phases: Unique new carbide and nitride materials,” Am. Sci., 89, No. 4, 334–343 (2001).

    Article  Google Scholar 

  2. M. Naguib, V.N. Mochalin, M.W. Barsoum, and Y. Gogotsi, “25th anniversary article: MXenes: a new family of two-dimensional materials,” Adv. Mater., 26, Issue 7, 992–1005 (2014).

    Article  CAS  Google Scholar 

  3. Wu Bian, Tian Zheng, Ming Sun, Yu Lei Du, and Hitoshi Hashimoto, “Mechanical properties of pulse discharge sintered Cr2AlC at 25–1000°C,” Mater. Lett., 63, Issue 8, 670–672 (2009).

  4. S.B. Li, W.B. Yu, H.X. Zhai, G.M. Songb, W.G. Sloof, and S. Van der Zwaag, “Mechanical properties of low temperature synthesized dense and fine-grained Cr2AlC ceramics,” J. Eur. Ceram. Soc., 31, 217–224 (2011).

    Article  Google Scholar 

  5. Zhimei Suna, Sa Lib, Rajeev Ahujab, and Jochen M. Schneider, “Calculated elastic properties of M2AlC (M: Ti, V, Cr, Nb, and Ta),” Solid State Commun., 129, 589–592 (2004).

    Article  Google Scholar 

  6. Wubian Tian, Peiling Wang, Guojun Zhang, Yanmei Kan, Yongxiang Li, and Dongsheng Yan, “Synthesis and thermal and electrical properties of bulk Cr2AlC,” Scr. Mater., 54, Issue 5, 841–846 (2006).

    Article  CAS  Google Scholar 

  7. Z.J. Lin, M.S. Li, J.Y. Wang, and Y.C. Zhou, “High-temperature oxidation and hot corrosion of Cr2AlC,” Acta Mater., 55, Issue 18, 6182–6191 (2007).

    Article  CAS  Google Scholar 

  8. D.E. Hajas, M. To. Baben, B. Hallstedt, R. Iskandar, J. Mayer, and J.M. Schneider, “Oxidation of Cr2AlC coatings in the temperature range of 1230 to 1410°C,” Surf. Coat. Technol., 206, Issue 4, 591–598 (2011).

  9. Shibo Li, Xiaodong Chen, Yang Zhou, and Guiming Song, “Influence of grain size on high temperature oxidation behavior of Cr2AlC ceramics,” Ceram. Int., 39, Issue 3, 2715–2721 (2013).

    Article  CAS  Google Scholar 

  10. Mo Yan, Xiaoming Duan, Zhuo Zhang, Xingqi Liao, Xichen Zhang, Baofu Qiu, Zengyan Wei, Peigang He, Jiancun Rao, Xiaodong Zhang, Dechang Jia, and Yu Zhou, “Effect of ball milling treatment on the microstructures and properties of Cr2AlC powders and hot pressed bulk ceramics,” J. Eur. Ceram. Soc., 39, Issue 16, 5140–5148 (2019).

    Article  CAS  Google Scholar 

  11. Yuelei Bai, Xiaodong Hea, Rongguo Wang, Yue Suna, Chuncheng Zhub, Shuai Wang, and Guiqing Chen, “High temperature physical and mechanical properties of large-scale Ti2AlC bulk synthesized by self- propagating high temperature combustion synthesis with pseudo hot isostatic pressing,” J. Eur. Ceram. Soc., 33, 2435–2445 (2013).

    Article  CAS  Google Scholar 

  12. G.M. Song, V. Schnabel, C. Kwakernaak, S. van der Zwaag, J.M. Schneider, and W.G. Sloof, “High temperature oxidation behavior of Ti2AlC ceramic at 1200°C,” Mater. High Temp., 29, No. 3, 205–209 (2012).

    Article  CAS  Google Scholar 

  13. Shibo Li, Guiming Song, Kees Kwakernaak, Sybrandvan der Zwaag, and Wim G. Sloof, “Multiple crack healing of a Ti2AlC ceramic,” J. Eur. Ceram. Soc., 32, Issue 8, 1813–1820 (2012).

    Article  CAS  Google Scholar 

  14. Yuelei Bai, Xiaodong He, Yibin Li, Chuncheng Zhu, and Sam Zhang, “Rapid synthesis of bulk Ti2AlC by self-propagating high temperature combustion synthesis with a pseudo-hot isostatic pressing process,” J. Mater. Res., 24, No. 8, 2528–2535 (2009).

    Article  CAS  Google Scholar 

  15. Y. Khoptiar and I. Gotman, “Ti2AlC ternary carbide synthesized by thermal explosion,” Mater. Lett., 57, 72–76 (2002).

    Article  CAS  Google Scholar 

  16. Zhijun Lin, Yanchun Zhou, Meishuan Li, and Jingyang Wang, “In-situ hot pressing/solid-liquid reaction synthesis of bulk Cr2AlC,” Z. Metallkd., 96, No. 3, 291–296 (2005).

    Article  CAS  Google Scholar 

  17. M.P. Saviak, A.B. Melnik, Yu.M. Solonin, A.V. Kotko, I.I. Timofeeva, and I.V. Uvarova, “Mechanosynthesis of nanodispersed titanium diboride,” Powder Metall. Met. Ceram., 53, No. 9–10, 497–504 (2015).

    Article  CAS  Google Scholar 

  18. M.P. Saviak, O.B. Melnik, I.V. Uvarova, A.V. Kotko, and O.O. Udovik, “Crystallographic features of nanosized titanium carbide produced from titanium and carbon in a planetary-ball mill,” Powder Metall. Met. Ceram., 55, No. 5–6, 251–258 (2016).

    Article  CAS  Google Scholar 

  19. Z.A. Munir and U. Anselmi-Tamburini, “Self-propagating exothermic reactions: The synthesis of high-temperature materials by combustion,” Mater. Sci. Rep., 3, Issue 6, 279–365 (1989).

    Article  Google Scholar 

  20. B. Hallstedt, D. Music, and Z. Sun, “Thermodynamic evaluation of the Al–Cr–C system,” Z. Metallkd., 97, 539–542 (2006).

    CAS  Google Scholar 

  21. V.T. Witusiewicz, B. Hallstedt, A.A. Bondar, U. Hecht, S.V. Sleptsov, and T.Ya. Velikanova, “Thermodynamic description of the Al–C–Ti system,” J. Alloys Compd., 623, 480–496 (2015).

    Article  CAS  Google Scholar 

  22. T. Thomas and C.R. Bowen, “Thermodynamic predictions for the manufacture of Ti2AlC MAX-phase ceramic by combustion synthesis,” J. Alloys Compd., 602, 72–77 (2014).

    Article  CAS  Google Scholar 

  23. Jingyang Wang, Yanchyn Zhou, and Zhijun Lin, “Raman active phonon modes and heat capacities of Ti2AlC and Cr2AlC ceramics: first-principles and experimental investigations,” Appl. Phys. Lett., 86, No. 10, 101902–101902-3 (2005).

    Article  Google Scholar 

  24. M.K. Drulis, H. Drulis, S. Gupta, M.W. Barsoum, and T. El-Raghy, “On the heat capacities of M2AlC (M = Ti, V, Cr) ternary carbides,” J. Appl. Phys., 99, 093502, https://doi.org/10.1063/1.2191744. 2006.

  25. A. Champagne, J.-L. Battaglia, T. Ouisse, F. Ricci, A. Kusiak, C. Pradere, V. Natu, A. Dewandre, M.J. Verstraete, M.W. Barsoum, and J.-C. Charlier, “Heat capacity and anisotropic thermal conductivity in Cr2AlC single crystals at high temperature,” J. Phys. Chem. C, 124, No. 43, 24017–24028 (2020).

    Article  CAS  Google Scholar 

  26. G. Concas, A. Corrias, F. Manca, G. Marongiu, G. Paschina, and G. Spano, “An X-ray diffraction and Mossbauer Spectroscopy study of the reaction between hematite and aluminum activated by ball milling,” Z. Naturforsch. A, 53, No. 5, 239–244 (1998).

    Article  CAS  Google Scholar 

  27. M.P. Savyak, M.G. Andreeva, V.E. Matsera, L.S. Protsenko, V.M. Adeev, A.I. Bykov, L.A. Klochkov, and I.V. Uvarova, “Mechanochemical synthesis of nanosized carbide Cr3C2,” Nanostrukt. Materialoved., No. 1, 66–73 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.P. Savyak.

Additional information

V.I. Ivchenko is deceased

Translated from Poroshkova Metallurgiya, Vol. 60, Nos. 5–6 (539), pp. 3–13, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solonin, Y., Savyak, M., Vasilkivska, M. et al. High-Energy Mechanical Grinding to Produce Cr2AlC and Ti2AlC Max Phases. Powder Metall Met Ceram 60, 259–267 (2021). https://doi.org/10.1007/s11106-021-00236-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-021-00236-y

Keywords

Navigation