Electrospark Deposition of Fenicrbsic–Meb2 Coatings on Steel

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

The effect of TiB2 and CrB2 additions to the commercial self-fluxing FeNiCrBSiC eutectic alloy on the structurization of electrospark coatings was examined. The mass transfer kinetics in the electrospark deposition of FTB20 (FeNiCrBSiC + 20% TiB2) and FCB20 (FeNiCrBSiC + 20% CrB2) composite materials and commercial self-fluxing FeNiCrBSiC alloy coatings onto steel 45 using an Alier-52 unit was studied. When the energy parameters of electrospark deposition increased, the mass transfer coefficient became higher and the electrospark coatings thicker and rougher. To reinforce the steel surfaces of machine parts operating in sliding friction conditions, application of the FTB20 and FCB20 coatings using an Alier-52 unit (2 and 4 modes at 1– 2 min/cm2) is recommended. The electrospark deposition of FTB20 and FCB20 electrodes leads to a heterophase structure on steel, consisting of an iron–nickel matrix and fine inclusions of chromium and/or titanium borides. The boride sizes in the developed coatings reach about 1 μm, which is one order of magnitude smaller than in the electrode materials (20 μm). In the deposition of the FCB20 electrode on steel, numerous cracks generate in the modified layer and deteriorate the service properties. The addition of TiB2 and CrB2 to the self-fluxing alloy increases the wear resistance of the electrospark coatings by four to five times as compared to the coatings produced from the commercial self-fluxing FeNiCrBSiB alloy (PG-Zh14 grade).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    G.V. Samsonov and A.D. Verkhoturov, Electrospark Deposition of Metallic Surfaces [in Russian], Naukova Dumka, Kyiv (1976), p. 219.

  2. 2.

    V.B. Tarelnyk, A.V. Paustovskii, Y.G. Tkachenko, V.S. Martsinkovskii, E.V. Konoplyanchenko, and K. Antoszewski, “Electric-spark coatings on a steel base and contact surface for optimizing the working characteristics of babbitt friction bearings,” Surf. Eng. Appl. Electrochem., 53, No. 3, 285–294 (2017).

    Article  Google Scholar 

  3. 3.

    V.B. Tarelnyk, E.V. Konoplyanchenko, P.V. Kosenko, and V.S. Martsinkovskii, “Problems and solutions in renovation of the rotors of screw compressors by combined technologies,” Chem. Petrol. Eng., 53, No. 7–8, 540–546 (2017).

    Article  Google Scholar 

  4. 4.

    V.B. Tarelnyk, V.S. Martsynkovskyy, and A.N. Zhukov, “Increase in the reliability and durability of metal impulse seals. Part 3,” Chem. Petrol. Eng., 53, No. 5–6, 385–389 (2017).

    Article  Google Scholar 

  5. 5.

    A.D. Verkhoturov, I.A. Podchernyaeva, L.F. Pryadko, and F.F. Egorov, Electrode Materials for Electrospark Deposition [in Russian], Nauka, Moscow (1988), p. 200.

  6. 6.

    Ruizhu Zhang, Jingrui Li, Dakao Yan, and Yuanyuan Zhao, “Mechanical properties of WC–8 Co wearresistant coating on pump impellers surface by electro-spark,” Rare Met. Mater. Eng., 44, No. 7, 1587–1590 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Wang Jian-sheng, Meng Hui-min, Yu Hong-ying, Fan Zi-shuan, and Sun Dong-bai, “Characterization and wear behavior of WC–0.8 Co coating on cast steel rolls by electro-spark deposition,” Int. J. Miner. Metall. Mater., 16, No. 6, 707–713 (2009).

    CAS  Google Scholar 

  8. 8.

    Seyyed Jaber Razavi and Hossein Aghajani, “Wear behavior of pure titanium coated with WC–Co by the use of electrospark deposition method,” J. Tribol., 141, No. 5, 2019, doi: 10.1115/1.4043065.

  9. 9.

    V.A. Rybalko, A.V. Siminel, and O. Sakhin, “Electrospark deposition of tungsten carbide on VT3-1 titanium alloy,” Metalloobrab., 30, No. 6, 14–20 (2005).

    Google Scholar 

  10. 10.

    R. Kreivaitis, A. Žunda, A. Kupcinskas, and V. Jankauskas, “A study of tribological behavior of WC–Co and Cu electro-spark alloyed layers under lubricated sliding conditions,” Tribol. Int., 103, 236–242 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    M. Salmaliyan, F. Malek Ghaeni, and M. Ebrahimnia, “Effect of electrospark deposition process parameters on WC–Co coating on H13 steel,” Surf. Coat. Technol., 321, 81–89 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    T. Miller, L. Pirolli, F. Deng, Ch. Ni, and A.V. Teplyakov, “Structurally different interfaces between electrospark-deposited titanium carbonitride and tungsten carbide films on steel,” Surf. Coat. Technol., 258, 814–821 (2014), https://doi.org/10.1016/j.surfcoat.2014.07.076.

  13. 13.

    V.P. Konoval, O.P. Umanskii, A.D. Panasyuk, I.O. Podchernyaeva, and O.Yu. Koval, “Deposition of electrospark coatings made of titanium–chromium carbide and diboride composites,” Sverkhtverd. Mater., No. 4, 84–91 (2009).

  14. 14.

    V.P. Konoval, O.P. Umanskii, A.D. Panasyuk, and O.F. Lukianchenko, “Effect of the chemical composition of electrode materials and deposition parameters on the properties of electrospark-deposited coatings. I. Mass transfer rate and coating composition,” Powder Metall. Met. Ceram., 53, No. 1–2, 31–39 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    V.P. Konoval, O.P. Umanskii, O.D. Kostenko, and I.S. Martsenyuk, “Effect of the chemical composition of electrode materials and deposition parameters on the properties of electrospark-deposited coatings. II. Coating hardness and wear resistance,” Powder Metall. Met. Ceram., 53, No. 3–4, 210–218 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    A.V. Paustovskii, V.I. Novikova, et al., “Evaluation of tribological characteristics of electric-spark coatings prepared on steel with electrode materials of the system TiN–Ni,” Powder Metall. Met. Ceram., 44, No. 5–6, 240–244 (2005).

    CAS  Article  Google Scholar 

  17. 17.

    M.S. Storozhenko, O.P. Umanskii, A.V. Lavrenko, S.S. Chuprov, and A.D. Kostenko, “Composites based on TiB2–SiC with a nickel–chromium matrix,” Powder Metall. Met. Ceram., 50, No. 11–12, 719–725 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    Q.S. Huang, Z.G. Chen, X. Wei, L. Wang, Z.W. Hou, and W. Yang, “Effects of pulse energy on microstructure and properties of Mo2FeB2-based cermet coatings prepared by electro-spark deposition,” China Surf. Eng., 30, 89–96 (2017).

    Google Scholar 

  19. 19.

    R. Rachidi, B. Kihel, F. Delaunois, V. Vitry, and D. Deschuyteneer, “Wear performance of thermally sprayed NiCrBSi and NiCrBSi–WC coatings under two different wear modes,” J. Mater. Environ. Sci., 8, 4550–4559 (2017).

    CAS  Google Scholar 

  20. 20.

    J. Rodriguez, A. Martin, R. Fernandez, and J.E. Fernandez, “An experimental study of the wear performance of NiCrBSi thermal spray coatings,” Wear, 255, 950–955 (2003).

    CAS  Article  Google Scholar 

  21. 21.

    J.M. Miguel, J.M. Guilemany, and S. Vizcaino, “Tribological study of NiCrBSi coating obtained by different processes,” Tribology Int., 36, 181–187 (2003).

    CAS  Article  Google Scholar 

  22. 22.

    T. Gómez-del Río, M.A. Garrido, J.E. Fernández, M. Cadenas, and J. Rodríguez, “Influence of the deposition techniques on the mechanical properties and microstructure of NiCrBSi coatings,” J. Mater. Process. Technol., 204, 304–312 (2008).

    Article  Google Scholar 

  23. 23.

    Z. Iždinská, A. Nasher, and K. Iždinský, “The structure and mechanical properties of NiCrBSi coatings prepared by laser beam cladding,” Mater. Eng., 17, 11–16 (2010).

    Google Scholar 

  24. 24.

    C.T. Kowk, F.T. Cheng, and H.C. Man, “Laser surface modification of UNS S31603 stainless steel using NiCrSiB alloy for enhancing cavitation erosion resistance,” Surf. Coat. Technol., 107, 31–40 (1998).

    Article  Google Scholar 

  25. 25.

    V.N. Gadalov, V.V. Samoilov, and A.I. Lytkin, “Electrospark coatings from self-fluxing materials with a nickel–chromium matrix on high-speed steel,” Sovr. Probl. Nauki Obraz., No. 5, 43–45 (2009).

  26. 26.

    A.V. Paustovskii, Yu.G. Tkachenko, V.G. Khristov, R.A. Alfintseva, and D.Z. Yurchenko, “Materials for electrospark strengthening and recovery of worn metallic surfaces,” Elektron. Obrab. Mater., 52, No. 1, 13–21 (2016).

    CAS  Google Scholar 

  27. 27.

    Q. Li, T.C. Lei, and W.Z. Chen, “Microstructural characterization of laser-clad TiC-reinforced Ni–Cr–B–Si–C composite coatings on steel,” Surf. Coat. Technol., 114, 278–284 (1999).

    CAS  Article  Google Scholar 

  28. 28.

    L.C. Betancourt-Dougherty and R.W. Smith, “Effects of load and sliding speed on the wear behaviour of plasma sprayed TiC–NiCrBSi coatings,” Wear, 217, 147–154 (1998).

    CAS  Article  Google Scholar 

  29. 29.

    N.A. Klinska-Rudenska and B.P. Kuzmin, “Effect of refractory additions on the structure and properties of coatings from self-fluxing PG-10K-01 and PGSR-3 alloys,” Fiz. Khim. Obrab. Mater., No. 1, 55–61 (1996).

  30. 30.

    V.E. Panin, I.V. Stepanova, S.V. Panin, M.A. Korchagin, Yu.I. Pochivalov, V.G. Durakov, and D.V. Dudina, “Increase in the strength of nickel-matrix coatings by introduction of nanosized titanium dirobride particles into the deposition mixture,” Fiz. Mezomekh., 8, 125–128 (2005).

    Google Scholar 

  31. 31.

    N. Kazamer, P.C. Valean, D. Pascal, V.A. Serban, R. Muntean, and G. Margineal, “Microstructure and phase composition of NiCrBSi–TiB2 vacuum furnace fused flame-sprayed coatings,” in: 7th Int. Conf. Advanced Mater. StructuresAMS, Vol. 416 (2018), pp. 1–7.

  32. 32.

    O.P. Umanskii, O.E. Terentiev, M.S. Storozhenko, and O.M. Polyarus, Composite Wear-Resistant Titanium Diboride-Based Material [in Ukrainian], Ukrainian Utility Model Patent 86595, IPC C22C 32/00; patent applicant/holder Inst. Probl. Materialoznav. NAN Ukrainy, No. u 201306383; appl. May 23, 05.2013; publ. January 10 (2014), Bulletin No. 10.

  33. 33.

    M. Storozhenko, O. Umanskyi, V. Krasovskyy, O. Terentjev, and M. Antonov, “Wetting and interfacial behaviour in TiB2–NiCrBSiC system,” Alloys Compd., 778, 15–22 (2019).

    CAS  Article  Google Scholar 

  34. 34.

    O. Umanskyi, M. Storozhenko, V. Krasovskyi, and M. Pareyko, “Wettability and interfacial behavior of Fe-based self-fluxing alloy-refractory compound” systems,” J. Superhard Mater., 39, 99–105 (2017).

  35. 35.

    A.P. Umanskii, M.S. Storozhenko, A.E. Terentiev, and I.S. Martsenyuk, “Structurization of composites from self-fluxing alloys with titanium diboride additions,” Powder Metall. Met. Ceram., 53, No. 5–6, 359–367 (2014).

    CAS  Article  Google Scholar 

  36. 36.

    A.P. Umanskii, M.S. Storozhenko, I. Hussainova, A.E. Terentiev, A.M. Kovalchenko, and M. Antonov, “Structure, phase composition and wear mechanisms of plasma-sprayed NiCrBSi–20 wt.% TiB2 coating,” Powder Metall. Met. Ceram., 53, No. 11–12, 663–671 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    O. Umanskyi, I. Hussainova, M. Storozhenko, O. Terentyev, and M. Antonov, “Effect of oxidation on sliding wear behavior of NiCrSiB–TiB2 plasma sprayed coatings,” Key Eng. Mater., 604, 16–19 (2014).

    CAS  Article  Google Scholar 

  38. 38.

    O. Umanskyi, M. Storozhenko, I. Hussainova, O. Terentyev, O. Koval, and D. Goljandin, “Effect of TiB2 additives on wear behavior of NiCrSiB-based plasma sprayed coatings,” Medziagotyra, 22, 15–19 (2016).

    Google Scholar 

  39. 39.

    A.P. Umanskyi, M.S. Storozhenko, M. Antonov, A.E. Terentiev, O. Koval, and D. Goljandin, “Effect of thermal spraying method on the microstructure and wear behavior of FeNiCrBSiC–CrB2 coating,” Key Eng. Mater., 604, 16–19 (2019).

    Article  Google Scholar 

  40. 40.

    O.P. Umanskyi, M.S. Storozhenko, M.V. Koshelev, M.M. Antonov, M.A. Vasylkivska, and I. I. Timofeeva, “Effect of Fe(Ni)CrBSiC–MeB2 material composition on the oxidation behavior at high temperatures,” Powder Metall. Met. Ceram., 57, No. 11–12, 670–678 (2019).

    CAS  Article  Google Scholar 

  41. 41.

    E.T. Mamykin and A.I. Yuga, “A set of machines and a method for determining the bearing characteristic of materials under sliding friction conditions,” Powder Metall. Met. Ceram., 12, No. 1, 55–58 (1973).

    Google Scholar 

Download references

Acknowledgements

The paper includes findings of research conducted with support of the National Academy of Sciences of Ukraine (NASU) under Project P8.1 within the Resurs-2 Target Research Program of NASU (Ordinance No. 293 dated 16 December 2015).

Author information

Affiliations

Authors

Corresponding author

Correspondence to M.S. Storozhenko.

Additional information

Translated from Poroshkova Metallurgiya, Vol. 59, Nos. 1–2 (531), pp. 80–94, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Umanskyi, O., Storozhenko, M., Tarelnyk, V. et al. Electrospark Deposition of Fenicrbsic–Meb2 Coatings on Steel. Powder Metall Met Ceram 59, 57–67 (2020). https://doi.org/10.1007/s11106-020-00138-5

Download citation

Keywords

  • electrospark deposition
  • coating
  • metal ceramics
  • self-fluxing alloy
  • titanium diboride
  • chromium diboride
  • wear resistance