Skip to main content
Log in

Structural and Phase Transformations in Plasma-Spray ZrB2–SiC–AlN Coatings on a C/C–SiC Substrate After High-Temperature Thermal Cyclic Heating

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The composition and structure of a plasma-spray coating produced from a 60ZrB2 + 20SiC + 20AlN (wt.%) composite powder on a C/C–SiC substrate were examined. The coating 320–370 μm thick is characterized by a heterophase structure, has no pores or cracks, and densely adheres to the substrate. The coating phase composition corresponds to that of the starting powder. A coated sample was oxidized in a supersonic oxygen–propane/butane flow at ~2000°C in thermal cyclic mode (2 min heating, 10 min cooling, 15 cycles). The oxidation rate was <7 μm/min. The main coating phases in the near-surface layers were zirconium dioxide m-ZrO2 and a mullite Al2SiO5 solid solution. Cross-sectional microstructural and elemental chemical analyses of the starting and oxidized coatings established the high-temperature oxidation mechanism. An Al2SiO5-based layer with inclusions of spheroidal m-ZrO2 grains 1–2 μm in size was found to form. Thin SiO2-based amorphous films in the SiO2–Al2O3 system developed on the layer surface. The results testify that the coating is resistant to high-temperature oxidation to ≤2000°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

References

  1. V.O. Lavrenko, A.D. Panasyuk, O.M. Grigoriev, O.V. Koroteev, and V.A. Kotenko, “High-temperature oxidation of ZrB2–SiC and ZrB2–SiC–ZrSi2 ceramics up to 1700°C in air,” Powder Metall. Met. Ceram., 51, No. 3–4, 217–221 (2012).

    Article  CAS  Google Scholar 

  2. V.A. Lavrenko, A.D. Panasyuk, and I.A. Podchernyaeva, “High-temperature oxidation of composite AlN–ZrB2–ZrSi2 ceramics,” Powder Metall. Met. Ceram., 47, No. 1–2, 151–156 (2008).

    Article  CAS  Google Scholar 

  3. P. Hu, X.-X. Zhang, J.-C. Han, X.-G. Luo, and S.-Y. Du, “Effect of various additives on the oxidation behavior of ZrB2-based ultra-high-temperature ceramics at 1800°C,” J. Am. Ceram. Soc., 93, No. 2, 345–349 (2010).

    Article  CAS  Google Scholar 

  4. O.N. Grigoriev, D.A. Galanov, V.A. Lavrenko, A.D. Panasyuk, S.M. Ivanov, A.V. Koroteev, and K.G. Nickel, “Oxidation of ZrB2–SiC–ZrSi2 ceramics in oxygen,” J. Eur. Soc., 30, 2397–2405 (2010).

    CAS  Google Scholar 

  5. G. Li, W. Han, X. Zhang, J. Han, and S. Meng, “Ablation resistance of ZrB2–SiC–AlN ceramic composites,” J. Alloys Compd., 479, 299–302 (2009).

    Article  CAS  Google Scholar 

  6. F. Monteverde, D. Alfano, and R. Savino, “Effects of LaB6 addition on arc-jet convectively heated SiCcontaining ZrB2-based ultra-high temperature ceramics in high enthalpy supersonic airflows,” Corros. Sci., 75, 443–453 (2013).

    Article  CAS  Google Scholar 

  7. D.D. Jayaseelan, E. Zapata-Solvas, P. Brown, and W.E. Lee, “In situ formation of oxidation resistant refractory coating on SiC-reinforced ZrB2 ultra high temperature ceramics,” J. Am. Ceram. Soc., 95, No. 4, 1–8 (2012).

    Article  Google Scholar 

  8. X.-H. Zhang, P. Hu, L. Xu, and S.-H. Meng, “The addition of lanthanum hexaboride to zirconium diboride for improved oxidation resistance,” Scr. Mater., 57, 1036–1039 (2007).

    Article  CAS  Google Scholar 

  9. A.L. Chamberlain, W.G. Fahrenholtz, G.E. Hilmas, and D. Ellerby, “Oxidation of ZrB2–SiC ceramics under atmospheric and reentry conditions,” Refract. Appl. Trans., 1–2, 2–8 (2005).

    Google Scholar 

  10. W. Krenkel and F. Berndt, “C/C–SiC composites for space applications and advanced friction systems,” Mater. Sci. Eng. A, 412, 177–181 (2005).

    Article  Google Scholar 

  11. B. Heidenreich, “Carbon fibre reinforced SiC materials based on melt infiltration,” in: Proc. 6th Int. Conf. High Temperature Ceramic Matrix Composites (HTCMC-6), New Delhi (2007), p. 6.

  12. S. Kumar, R. Chandra, A. Kumar, N.E. Prasad, and L.M. Manocha, “C/SiC composites for propulsion application,” Compos. Nanostruct., 7, No. 4, 225–230 (2015).

    CAS  Google Scholar 

  13. A.S. Berezhnoi, Multicomponent Oxide Systems [in Russian], Kyiv (1970), p. 572.

  14. O.N. Grigoriev, A.D. Panasyuk, I.A. Podchernyaeva, I.P. Neshpor, and D.V. Yurechko, “Mechanism of high-temperature oxidation of ZrB2-based composite ceramics in the ZrB2–SiC–AlN system,” Powder Metall. Met. Ceram., 57, No. 1–2, 71–74 (2018).

    Article  CAS  Google Scholar 

  15. V.A. Lavrenko, M. Desmaison-Brut, A.D. Panasyuk, and J. Desmaison, “Features of corrosion resistance of AlN–SiC ceramics in air up to 1600°C,” J. Eur. Ceram. Soc., 18, 2339–2343 (1998).

    Article  CAS  Google Scholar 

  16. A.D. Panasyuk, V.A. Lavrenko, and S.F. Korablev, “High-temperature oxidation of AlN–SiC ceramics,” Key Eng. Mater., No. 132–136, 1621–1629 (1977).

    Article  CAS  Google Scholar 

  17. O.N. Grigoriev, V.B. Vinokurov, L.I. Klimenko, N.D. Bega, and N.I. Danilenko, “Sintering of zirconium diboride and phase transformations in the presence of Cr3C2,” Powder Metall. Met. Ceram., 55, No. 3–4, 185–194 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor Yu.S. Borisov for depositing coatings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Podchernyaeva.

Additional information

Translated from Poroshkova Metallurgiya, Vol. 58, Nos. 5–6 (527), pp. 120–130, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoriev, O., Podchernyaeva, I.A., Yurechko, D.V. et al. Structural and Phase Transformations in Plasma-Spray ZrB2–SiC–AlN Coatings on a C/C–SiC Substrate After High-Temperature Thermal Cyclic Heating. Powder Metall Met Ceram 58, 341–350 (2019). https://doi.org/10.1007/s11106-019-00084-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-019-00084-x

Keywords

Navigation