Skip to main content
Log in

Characterization of Alumina–Molybdenum Composites Prepared by Gel Casting Method

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

This work concerns the study of ceramic-metal composite materials processed by gel casting method. Due to limited possibilities of fabrication complex-shape elements obtained by classical methods of powder metallurgy (such as isostatic or uniaxial pressing) the colloidal processes are recently willingly applied in manufacturing of ceramic matrix composites. In the present work Al2O3–10 vol.% Mo composites were formed by aqueous gel casting process and sintered in argon atmosphere. Selected physical properties and phase composition have been described. The microstructure of the green and sintered samples was examined with a scanning electron microscope. Molybdenum particles were homogeneously distributed in the ceramic matrix. Moreover, Mo2C was formed during sintering process that had a positive contribution to enhancing the hardness of the composite. The composite after sintering was characterized by a density higher than 95% of theoretical density and high hardness. The performed studies have confirmed the possibility of application of gel casting method to produce Al2O3–Mo composite system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. J.S. Moya, S. Lopez-Esteban, and C. Pecharroma’n, “The challenge of ceramic/metal microcomposites and nanocomposites,” Prog. Mater. Sci., 52, No. 7, 1017–1090 (2007).

    Article  CAS  Google Scholar 

  2. S. Tanaka, S. Goi, and Z. Kato, “Influence of granule characteristics on fabrication of translucent alumina ceramics with high strength and reliability,” J. Ceram. Soc. Jpn, 124, No. 4, 426–431 (2016).

    Article  CAS  Google Scholar 

  3. H.M. Irshad, B.A. Ahmed, M.A. Ehsan, T.I. Khan, T. Laoui, M.R. Yousaf, A. Ibrahim, and A.S. Hakeem, “Investigation of the structural and mechanical properties of micro-/nano-sized Al2O3 and cBN composites prepared by spark plasma sintering,” Ceram. Inter.,43, No. 14, 10645–10653 (2017).

    Article  CAS  Google Scholar 

  4. T. Hottaa, H. Abeb, M. Naitob, M. Takahashic, K. Uematsud, and Z. Kato, “Effect of coarse particles on the strength of alumina made by slip casting,” Powder Technol., 149, Nos. 2–3, 106–111 (2005).

    Article  Google Scholar 

  5. P. Bednarek, M. Szafran, Y. Sakka, and T. Mizerski, “Gelcasting of alumina with a new monomer synthesized from glucose,” J. Eur. Ceram. Soc., 30, No. 8, 1795–1801 (2010).

    Article  CAS  Google Scholar 

  6. A. Miazga, K. Konopka, M. Gizowska, and M. Szafran, “Preparation of Al2O3–Ni cermet composites by aqueous gelcasting,” Powder Metall. Met. Ceram., 52, Nos. 9–10, 567–571 (2014).

    Article  CAS  Google Scholar 

  7. M. Haji, T. Ebadzadeh, M.H. Amin, M. Kazemzad, and T. Talebi, “Gelcasting of Al2O3/Ag nanocomposite using water-soluble solid-salt precursor,” Ceram. Inter., 38, 867–870 (2012).

    Article  CAS  Google Scholar 

  8. T. Gibas, Korund i jego zastosowanie w technice, Wydawnictwo Slask, Katowice (1970), p. 434.

    Google Scholar 

  9. G. Pezzotti, H. Suenobu, T. Nishida, and O. Sbaizero, “Measurement of microscopic bridging stresses in an Alumina/Molybdenum composite by in situ fluorescence spectroscopy,” J. Am. Ceram. Soc., 82, No. 5, 1257–1262 (1999).

    Article  CAS  Google Scholar 

  10. Y. Su, L. Hu, H. Fan, J. Song, and Y. Zhang, “Surface engineering design of alumina/molybdenum fibrous monolithic ceramic to achieve continuous lubrication from room temperature to 800°C,” Tribol. Lett., 65, No. 2, 47–55 (2017).

  11. J. Zygmuntowicz, A. Baczyńska, A. Miazga, W. Kaszuwara, and K. Konopka, “Al2O3–Mo functionally graded material obtained via centrifugal slip casting,” Ceram. Mater., 69, No. 2, 73–77 (2017).

    CAS  Google Scholar 

  12. K. Broniszewski, J. Wozniak, K. Czechowski, L. Jaworska, and A. Olszyna, “Al2O3–Mo cutting tools for machining hardened stainless steel,” Wear, 303, Nos. 1–2, 87–91 (2013).

    Article  CAS  Google Scholar 

  13. O.O. Omatete, M.A. Janney, and S.D. Nunn, “Gelcasting: From laboratory development toward industrial production”, J. Eur. Ceram. Soc., 17, Nos. 2–3, 407–413 (1997).

    Article  Google Scholar 

  14. A. Krell and P. Blank, “The influence of shaping method on the grain size dependence of strength in dense submicrometre alumina,” J. Eur. Ceram. Soc., 16, No. 11, 1189–1200 (1996).

    Article  CAS  Google Scholar 

  15. J. Yang, J. Yu, and Y. Huang, “Recent developments in gelcasting of ceramics,” J. Eur. Ceram. Soc., 31, No. 14, 2569–2591 (2011).

    Article  CAS  Google Scholar 

  16. A. Idzkowska, P. Wiecinska, and M. Szafran, “Acryloyl derivative of glycerol in fabrication of zirconia ceramics by polymerization in situ,” Ceram. Int., 40, No. 8, 13289–13298 (2014).

    Article  CAS  Google Scholar 

  17. C. Tallon, R. Moreno, M.I. Nieto, D. Jach, G. Rokicki, and M. Szafran, “Gelcasting performance of alumina aqueous suspensions with glycerol monoacrylate: a new low-toxicity acrylic monomer,” J. Am. Ceram. Soc., 90, No. 5, 1386–1393 (2007).

    Article  CAS  Google Scholar 

  18. V.A. Bhanu and K. Kishore, “Role of oxygen in polymerization reactions,” Chem. Rev., 91, No. 2, 99–117 (1991).

    Article  CAS  Google Scholar 

  19. J. Zygmuntowicz, P. Wiecinska, A. Miazga, K. Konopka, M. Szafran, and W. Kaszuwara, “Thermoanalytical studies of the ceramic-metal composites obtained by gel-centrifugal casting,” J. Therm. Anal. Calorim.,133, No. 1, 303–312 (2017).

    Article  Google Scholar 

  20. T. Wejrzanowski, R. Pielaszek, A. Opalinska, H. Matysiak, W. Lojkowski, and K.J. Kurzydlowski, “Quantitative methods for nanopowders characterization”, Appl. Surf. Sci., 253, No. 1, 204–208 (2006), https://doi.org/10.1016/j.apsusc.2006.05.089.

    Article  CAS  Google Scholar 

  21. Y. Ma, G. Guan, X. Hao, J. Cao, and A. Abudula, “Molybdenum carbide as alternative catalyst for hydrogen production – A review,” Renew. Sust. Energ. Rev., 75, 1101–1129 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Warsaw University of Technology, Faculty of Material Science and Engineering (statute work).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lada.

Additional information

Published in Poroshkova Metallurgiya, Vol. 58, Nos. 5–6 (527), pp. 61–67, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lada, P., Miazga, A., Zagorska, M. et al. Characterization of Alumina–Molybdenum Composites Prepared by Gel Casting Method. Powder Metall Met Ceram 58, 295–300 (2019). https://doi.org/10.1007/s11106-019-00073-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-019-00073-0

Keywords

Navigation