Powder Metallurgy and Metal Ceramics

, Volume 57, Issue 7–8, pp 410–420 | Cite as

Diffusion Porosity in Films of Impregnated M-Type WBa Thermionic Cathodes and its Influence on Cathode Emission Characteristics

  • O. I. HetmanEmail author
  • L. M. Kapitanchuk

The paper examines how the emission characteristics of impregnated M-type cathodes depend on variation in the film composition and structure in the cathode operation process. Diffusion porosity has been established to appear in the 49.5% Os–49.5% Ir–1% Al and 50% Os–50% W films, and its influence on the emission characteristics of the M-type cathodes has been studied. It is assumed that the diffusion porosity decreases the M-type cathode work function because the total emitting area of the film increases and promotes faster delivery of barium and its compounds to the emitting layer through mass transfer facilitated by both Knudsen flow of atoms through pores and surface diffusion along pore walls. Degradation in the emission characteristic of the M-type cathode is due to the film structural failure. The experiments confirm the existence of three-dimensional barium-containing crystallites on the emitting surface of the M-type WBa cathode film.


M-type WBa thermionic cathodes emission film tungsten osmium iridium diffusion porosity, three-dimensional crystallites 


  1. 1.
    A. D. Smigelskas and E. O. Kirkendall, “Zinc diffusion in alpha brass,” Trans. AIME, 171, 130–142 (1947).Google Scholar
  2. 2.
    Ya. E. Geguzin, Physics of Sintering [in Russian], Nauka, Moscow (1967), p. 360.Google Scholar
  3. 3.
    Ya. E. Geguzin, Diffusion Zone [in Russian], Nauka, Moscow (1979), p. 343.Google Scholar
  4. 4.
    V. V. Skorokhod and S. M. Solonin, Physical Metallurgy Fundamentals of Powder Sintering [in Russian], Metallurgiya, Moscow (1984), p. 159.Google Scholar
  5. 5.
    Ya. E. Geguzin, “Diffusion porosity in metals and alloys,” Usp. Fiz. Nauk, LXI, No. 2, 217–247 (1957).CrossRefGoogle Scholar
  6. 6.
    L. N. Paritskaya, “Kirkendall effect: dramatic history of discovery and developments,” Defect Diffus. Forum, 249, 73–80 (2006).CrossRefGoogle Scholar
  7. 7.
    Ya. E. Geguzin, Yu. I. Boiko, and L. N. Paritskaya, “On experimental separation of the Frenkel and Kirkendall effects,” Dokl. Akad. Nauk SSSR, 173, No. 2, 323–324 (1967).Google Scholar
  8. 8.
    O. I. Get’man and V. V. Skorokhod, “Structural engineering of impregnated dispenser cathodes,” Powder Metall. Met. Ceram., 53, No. 11–12, 701–721 (2015).CrossRefGoogle Scholar
  9. 9.
    P.A. Zalm and A.J.A. Van Stratum, “Osmium dispenser cathodes,” Philips Tech. Rev., 27, No. 3–4, 69–75 (1966). Google Scholar
  10. 10.
    R. Cortenraad, A.W. Denier van der Gon, et al., “Surface analysis of thermionic dispenser cathodes,” Appl. Surf. Sci., 191, 153–165 (2002).CrossRefGoogle Scholar
  11. 11.
    Herbert B. Michaelson, “The work function of the elements and its periodicity,” J. Appl. Phys., 48, 4729–4733 (1977).CrossRefGoogle Scholar
  12. 12.
    R. E. Thomas and J.W. Gibson, “Work function variation versus alloy concentration for dispenser cathodes,” Appl. Surf. Sci., 29, 49–66 (1987).CrossRefGoogle Scholar
  13. 13.
    A. S. Gilmour Jr., Principles of Traveling Wave Tubes, Artech House, Norwood (1994).Google Scholar
  14. 14.
    Yu. V. Gurkov and A. V. Druzhinin, “Emission parameters of osmium-plated impregnated dispenser thermionic cathode,” Izv. Akad. Nauk SSSR. Ser. Fiz., 43, No. 9, 1850–1854 (1979).Google Scholar
  15. 15.
    A. P. Makarov, O. K. Kultashev, et al., “Performance principles and ageing of osmium-plated dispenser cathode,” Radiotekh. Elektron., 36, No. 11, 2196–2201 (1991).Google Scholar
  16. 16.
    D. Brion, J. C. Tonnerre, and A. M. Shroff, “Auger spectroscopy investigations of various types of impregnated cathodes,” Appl. Surf. Sci., 16, 55–72 (1983).CrossRefGoogle Scholar
  17. 17.
    C. S. Fang, W. S. Tse, and C. E. Maloney, “Re/Ir/W and Os/Ir/W alloy coatings on impregnated tungsten cathodes,” Appl. Surf. Sci., 33–34, 1189–1199 (1988).CrossRefGoogle Scholar
  18. 18.
    S. S. Brenner, “The thermal rearrangement of field-evaporated iridium surfaces,” Surf. Sci., 2, 496–508 (1964).CrossRefGoogle Scholar
  19. 19.
    G. Antczak, M. Blaszczyszyn, and R. Blaszczyszyn, “Surface self-diffusion of iridium: field electron emission study,” Acta Phys. Pol. A, 98, No. 4, 383–388 (2000).CrossRefGoogle Scholar
  20. 20.
    D. W. Bassett and M. J. Parsley, “Field ion microscope studies of transition metal adatom diffusion on (110), (211) and (321) tungsten surfaces,” J. Phys. D: Appl. Phys., 3, No. 5, 707–719 (1970).CrossRefGoogle Scholar
  21. 21.
    P. D. Swartzentruber, T. J. Balk, et al., “Direct work function measurement of activated M-type dispenser cathodes,” in: Proc. Vacuum Electronics Conference, IEEE International (2014), pp. 135–136.Google Scholar
  22. 22.
    P. Swartzentruber, T. J. Balk, and S. Roberts, “Influence of Os–Ru coating on closed-space diode tests of M-type dispenser cathodes,” in: Proc. Vacuum Electronics Conference (IVEC), IEEE International (2011), pp. 401–402.Google Scholar
  23. 23.
    P. D. Swartzentruber, Wen-Chung Li, et al., “Optimizing osmium–ruthenium films to inhibit tungsten interdiffusion,” in: Proc. Vacuum Electronics Conference (IVEC), IEEE International (2010), pp. 73–74.Google Scholar
  24. 24.
    P. D. Swartzentruber, T. J. Balk, et al., “Microstructural influence of OsRu thin films on dispenser cathodes,” in: Proc. Vacuum Electronics Conference (IVEC), IEEE International (2012), pp. 163–164.Google Scholar
  25. 25.
    P. D. Swartzentruber, “Microstructure and work function of dispenser cathode coatings: effects on thermionic emission,” in: Theses and Dissertations—Chemical and Materials Engineering, (2014).
  26. 26.
    Yu. V. Gurkov, A. V. Druzhinin, T. A. Kupriyanova, et al., “Emission microscopy and electron microprobe analysis of the dispenser cathode surface,” Izv. Akad. Nauk SSSR. Ser. Fiz. 38, No. 11, 2270–2274 (1974).Google Scholar
  27. 27.
    B. Ch. Dyubua, A. G. Mikhalchenkov, et al., “Effect of the surface structure of dispenser cathodes on their emission properties,” Elektron. Tekh. Ser. 1. Elektron. SVCh, No. 1, 25–34 (2010).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of UkraineKyivUkraine
  2. 2.Paton Electric Welding Institute, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations