Skip to main content
Log in

Investigation of Carbon Source and Atmosphere During Reduction–Carbonization Process of Synthesizing WC–Co Composite Powders Via Spray Conversion Method

  • THEORY, MANUFACTURING TECHNOLOGY, AND PROPERTIES OF POWDERS AND FIBERS
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Ultrafine WC–Co composite powders are synthesized via spray conversion method. The effect of carbon source (organic carbon and carbon black) and atmosphere (H2 and N2) on the composite powders is investigated in terms of phase composition, particle size distribution, morphology, and carbon content, including the total carbon and free carbon using X-ray diffraction, particle size analyzer, scanning electron microscope, and infrared carbon and sulfur analyzer. The results show that using organic carbon or carbon black and H2 or N2 has its own advantages and disadvantages. Therefore, carbon source and the atmosphere can be chosen according to the application of the composite powders, i.e. cemented carbides and thermal spraying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. R. M. Raihanuzzaman, M. Rosinski, Z. Xie, and R. Ghomashchi, “Microstructure and mechanical properties and of pulse plasma compacted WC–Co,” Int. J. Refrac. Met. Hard Mater., 60, 58–67 (2016).

    Article  Google Scholar 

  2. A. Ghabchi, T. Varis, E. Turunen, et al., “Behavior of HVOF WC–10Co4Cr coatings with different carbide size in fine and coarse particle abrasion,” J. Therm. Spray Technol., 19, 368–377 (2010).

    Article  Google Scholar 

  3. S. Emani, C. Wang, L. L. Shaw, and Z. Chen, “On the hardness of submicrometer-sized WC–Co materials,” Mater. Sci. Eng. A, 628, 98–103 (2015).

    Article  Google Scholar 

  4. S. I. Cha, S. H. Hong, G. H. Ha, and B. K. Kim, “Microstructure and mechanical properties of nanocrystalline WC–10Co cemented carbides,” Scripta Mater., 44, 1535–1539 (2001).

    Article  Google Scholar 

  5. K. Jia, T. E. Fischer, and B. Gallois, “Microstructure, hardness and toughness of nanostructured and conventional WC–Co composites,” Nanostr. Mater., 10, 875–891 (1998).

    Article  Google Scholar 

  6. M. H. Enayati, G. R. Aryanpour, and A. Ebnonnasir, “Production of nanostructured WC–Co powder by ball milling,” Int. J. Refrac. Met. Hard Mater., 27, 159–163 (2009).

    Article  Google Scholar 

  7. L. E. McCandlish, B. H. Kear, and B. K. Kim, “Processing and properties of nanostructured WC–Co,” Nanostr. Mater., 1, No. 2, 119–124 (1992).

    Article  Google Scholar 

  8. S. I. Cha, S. H. Hong, G. H. Ha, and B. K. Kim, “Mechanical properties of WC–10Co cemented carbides sintered from nanocrystalline spray conversion processed powders,” Int. J. Refrac. Met. Hard Mater., 19, 397–403 (2001).

    Article  Google Scholar 

  9. K. Mohan and P. R. Strutt, “Microstructure of spray converted nanostructured tungsten carbide–cobalt composite,” Mater. Sci. Eng. A, 209, 237–242 (1996).

    Article  Google Scholar 

  10. L. E. McCandlish, B. H. Kear, and S. J. Bhatia. Spray Conversion Process for the Production of Nanophase Composite Powders, Patent 5352269 United States. Appl. Jul 09, 1991; Publ. Oct 04, 1994.

  11. A. Mukhopadhyay and B. Basu, “Recent developments on WC-based bulk composites,” J. Mater. Sci., 46, 571–589 (2011).

    Article  Google Scholar 

  12. H. Lin, B. Tao, J. Xiong, et al., “Tungsten carbide (WC) nanopowders synthesized via novel core–shell structured precursors,” Ceram. Int., 39, 2877–2881 (2013).

    Article  Google Scholar 

  13. Q. Yang, J. Yang, H. Yang, et al., “Synthesis and characterization of WC–Co nanosized composite powders with in situ carbon and gas carbon sources,” Met. Mater. Int., 22, 663–669 (2016).

    Article  Google Scholar 

  14. G. H. Ha and B. K. Kim, “Synthesis of ultrafine WC–Co powder by mechanochemical process,” Powder Metallurgy, 45, 29–32 (2002).

    Article  Google Scholar 

  15. C. Tang, M. Yi, and X. Tan, “Preparation of WC–Co composite powder by spray-drying and direct carbonization method,” Powder Metall. Technol., 28, 279–283 (2010).

    Google Scholar 

  16. Y. Jin, B. Huang, C. Liu, and Q. Fu, “Phase evolution in the synthesis of WC–Co–Cr3C2–VC nanocomposite powders from precursors,” Int. J. Refrac. Met. Hard Mater., 41, 169–173 (2013).

    Article  Google Scholar 

  17. U. Kanerva, J. Lagerbom, M. Karhu, et al., “Synthesis of nano-WC from water soluble raw materials: Effects of tungsten source and synthesis atmosphere on chemical and phase structure evolution,” Int. J. Refrac. Met. Hard Mater., 50, 65–71 (2015)

    Article  Google Scholar 

  18. U. Kanerva, M. Karhu, J. Lagerbom, et al., “Chemical synthesis of WC–Co from water-soluble precursors: The effect of carbon and cobalt additions to WC synthesis,” Int. J. Refrac. Met. Hard Mater., 56, 69–75 (2016).

    Article  Google Scholar 

  19. J. Lü, J. Yang, H. Chen, et al., “Preparation of nanocrytalline WC–Co composite powder by spray-drying and low temperature reduction-carbonization process,” Mater. Sci. Eng. Powder Metall., 18, 835–839 (2013).

    Google Scholar 

  20. A. Kumar, K. Singh, and O. P. Pandey, “Reduction of WO3 to nano-WC by thermo-chemical reaction route,” Physica E: Low-Dimen. Sys. Nanostr., 41, No. 4, 677–684 (2009).

    Article  Google Scholar 

  21. R. Liu, D. Yi, and J. Li, “Study of preparing nanocrystalline WC powder,” J. Mater. Sci. Eng., 24, No. 3, 418–422 (2006).

    Google Scholar 

  22. J. Luo, Z. Guo, T. Lin, and X. Hu, “Study on removing free carbon of nanosized WC by heat processing in flowing hydrogen atmosphere,” Trans. Mater. Heat Treat., 28, No 1, 38–41 (2007).

    Google Scholar 

  23. J. Ruan and P. Huang, The Principle of Powder Metallurgy, Mechanical Industry Press, Beijing (2012).

    Google Scholar 

Download references

Acknowledgements

Zhonghua Wang is grateful to Mr. Jie Wu for his assistance in conducting experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Wang.

Additional information

Published in Poroshkova Metallurgiya, Vol. 57, Nos. 3–4 (520), pp. 3–14, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Shang, G., Lü, J. et al. Investigation of Carbon Source and Atmosphere During Reduction–Carbonization Process of Synthesizing WC–Co Composite Powders Via Spray Conversion Method. Powder Metall Met Ceram 57, 127–137 (2018). https://doi.org/10.1007/s11106-018-9960-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-018-9960-6

Keywords

Navigation