Powder Metallurgy and Metal Ceramics

, Volume 56, Issue 11–12, pp 681–687 | Cite as

Effect of Chromium Diboride Additives on Strength Properties of NiAl–CrB2 Composites in a Wide Temperature Range

  • O. P. Umanskyi
  • M. P. Brodnikovskyi
  • M. S. Ukrainets
  • O. M. Poliarus
  • O. U. Stelmakh
  • D. M. Brodnikovskyi

The compressive yield stress and bending strength of NiAl–CrB2 composites are studied in the 20–800°C temperature range. The effect of the composite phase ratio and experimental temperature on the composite strength for different loading patterns is established. During tensile stresses, the introduction of 15 wt.% CrB2 into the intermetallic is optimal to ensure the maximum bending strength of the composite at 500°C. The bending strength of NiAl–15 wt.% CrB2 composite at the experimental temperature 500°C exceeds that of the starting NiAl, by a factor of 3.


NiAl CrB2 high-temperature strength bending strength yield point composite material dispersion strengthening 


  1. 1.
    D. B. Miracle and R. Darolia, “NiAl and its alloys,” in: Structural Applications of Intermetallic Compounds; J. H. Westbrook and R. L. Fleischer (Eds.), John Wiley & Sons, New York (2000), p. 346.Google Scholar
  2. 2.
    R. Darolia, “NiAl alloys for high temperature structural applications,” J. Min. Met. Mater. Soc., 44–48 (1991).Google Scholar
  3. 3.
    S. Zhu, Q. Bi, M. Niu, et al., “Tribological behavior of NiAl matrix composites with addition of oxides at high temperatures,” Wear, 274–275, 423–434 (2012).Google Scholar
  4. 4.
    B. Movahedi, “Fracture toughness and wear behavior of NiAl-based nanocomposite HVOF coatings,” Surf. Coat. Technol., 235, 212–219 (2013).CrossRefGoogle Scholar
  5. 5.
    L. Y. Sheng, F. Yang, T. F. Xi, et al., “Investigation on microstructure and wear behavior of the NiAl–TiC–Al2O3 composite fabricated by self-propagation high-temperature synthesis with extrusion,” J. Alloys Compd., 554, 182–188 (2013).CrossRefGoogle Scholar
  6. 6.
    J. Guo, Z. Wang, L. Sheng, et al., “Wear properties of NiAl based materials,” Prog. Nat. Sci. Mater. Int., No. 5, 414–425 (2012).Google Scholar
  7. 7.
    A. D. Panasyuk, V. S. Fomenko, and G. G. Glebova, Resistance of Nonmetallic Materials in Melts [in Russian], Naukova Dumka, Kiev (1986), p. 352.Google Scholar
  8. 8.
    O. Umanskyi, O. Poliarus, M. Ukrainets, and I. Martsenyuk, “Effect of ZrB2, CrB2 and TiB2 additives on the tribological characteristics of NiAl–based gas-thermal coatings,” Key Eng. Mater., 604, 20–23 (2014).CrossRefGoogle Scholar
  9. 9.
    M. S. Ukrainets, O. P. Umanskii, O. M. Polyarus, et al., “Effect of experimental temperature on tribotechnical properties of NiAl–CrB2 composite coatings,” Nauk. Notatky, Part 2, No. 41, C. 206–212 (2013).Google Scholar
  10. 10.
    A. P. Umanskii, E. N. Polyarus, M. S. Ukrainets, and L. M. Kapitanchuk, “Structure and tribotechnical characteristics of NiAl–CrB2 composite materials and coatings,” Powder Metall. Met. Ceram., 54, Nos. 1–2, 53–59 (2015).Google Scholar
  11. 11.
    O. Umanskyi, O. Poliarus, M. Ukrainets, et al., “High temperature sliding wear of NiAl-based coatings reinforced by borides,” Mater. Sci. (Medžiagotyra), 22, No. 1, 49–53 (2016).Google Scholar
  12. 12.
    O. Umanskyi, O. Poliarus, M. Ukrainets, and M. Antonov, “Physical–chemical interaction in NiAl–MeB2 systems intended for tribological applications,” Welding J., No. 94, 225–230 (2015).Google Scholar
  13. 13.
    O. Umanskyi, O. Poliarus, M. Ukrainets, et al., “Influence of CrB2 additives into NiAl intermetallics on tribological properties of thermal spray coatings at high temperature friction,” in: Conference MET-2013: Materials, Environment, Technology (June 19–20, 2013, Latvia, Riga), Riga (2013), pp 37–43.Google Scholar
  14. 14.
    S. T. Chang, W. H. Tuan, H. C. You, et al., “Effect of surface grinding on the strength of NiAl and Al2O3/NiAl composites,” Mater. Chem. Phys., 59, No. 3, 220–224 (1999).Google Scholar
  15. 15.
    G. V. Samsonov, T. I. Serebryakova, and V. A. Neronov, Borides [in Russian], Atomizdat, Moscow (1975), p. 376.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • O. P. Umanskyi
    • 1
  • M. P. Brodnikovskyi
    • 1
  • M. S. Ukrainets
    • 1
  • O. M. Poliarus
    • 1
  • O. U. Stelmakh
    • 2
  • D. M. Brodnikovskyi
    • 1
  1. 1.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKyivUkraine
  2. 2.National Aviation UniversityKyivUkraine

Personalised recommendations