Powder Metallurgy and Metal Ceramics

, Volume 56, Issue 11–12, pp 664–669 | Cite as

Properties of ZhS32-VI Powder Alloys with Titanium Carbide

  • G. P. Dmitrieva
  • T. S. Cherepova
  • A. I. Dukhota
  • V. I. Nichiporenko

To design a wear-resistant material operated at high temperatures, the physical and mechanical properties of the new nickel alloy (whose components are heat-resistant alloy ZhS32-VI and 30–50% titanium carbide) obtained by powder metallurgy are investigated. It is shown that the temperature where the alloy starts melting is 1360 ± 10°C, the wear resistance at <1050°C doubles that of nickel-based powder alloys with titanium carbide, while the heat resistance at 1100°C satisfies the requirements of the intended alloys. It is shown that the obtained alloy can be plasma-sprayed onto the blade material and used for protecting the contacting surfaces of GTE blades against wear.


powder alloys ZhS32-VI titanium carbide wear resistance heat resistance melting temperature 


  1. 1.
    G. P. Dmitrieva and T. S. Cherepova, “Wear resistance of cobalt–carbide eutectic alloy in gas-dynamic loading,” Metal. Nov. Tekhnol., 35, No. 10, 1383–1390 (2013).Google Scholar
  2. 2.
    G. P. Dmitrieva, T. S. Cherepova, T. A. Kosorukova, and V. I. Nychyporenko, “Structure and properties of cobalt-based wear-resistant alloy with niobium carbide,” Metal. Nov. Tekhnol., 37, No. 7, 973–986 (2015).CrossRefGoogle Scholar
  3. 3.
    T. S. Cherepova, G. P. Dmitrieva, A. V. Nosenko, and O. M. Semirga, “Wear-resistant alloy for protecting contact surfaces of aircraft engine working blades against oxidizing at high temperatures,” Nauka Innov., 10, No. 4, 22–31 (2014).CrossRefGoogle Scholar
  4. 4.
    V. A. Leontiev, S. D. Zalichikhis, E. V. Kondratyuk, and V. E. Zamkovoi, “Restoring GTE to working conditions using new techniques and materials,” Vest. Dvigatelestr., No. 4, 99–103 (2006).Google Scholar
  5. 5.
    G. I. Peichev, A. K. Shurin, L. I. Ivshchenko, et al., “Wear-resistant alloys for contact surfaces of GTE parts,” Vest. Dvigatelestr., No. 2, 188–192 (2006).Google Scholar
  6. 6.
    A. K. Shurin, “Studying phase equilibriums and structure of alloys with introduction phases for developing materials with composite reinforcement,” in: Phase Equilibriums in Metal Alloys [in Russian], Nauka, Moscow (1981), pp. 209–217.Google Scholar
  7. 7.
    G. Dmitrieva and T. Cherepova, “Melting diagram of Cobalt-rich alloys in the system C–Co–Nb,” Chem. Met. Alloys, No. 8, 83–90 (2015).Google Scholar
  8. 8.
    T. S. Cherepova and G. P. Dmitrieva, “The wear features of powder cobalt alloys strengthened with titanium carbide,” Powder Metall. Met. Ceram., 55, Nos. 5–6, 374–378 (2016).CrossRefGoogle Scholar
  9. 9.
    T. S. Cherepova, G. P. Dmitrieva, O. I. Dukhota, and M. V. Kindrachuk, “Features of powder nickel alloys strengthened with titanium carbide,” Fiz. Khim. Mekh. Mater., 52, No. 2, 29–34 (2016).Google Scholar
  10. 10.
    T. S. Cherepova, G. P. Dmitrieva, O. I. Dukhota, and M. V. Kindrachuk, Wear-Resistant Nickel Alloy, Patent 111036 Ukraine, MPK C22C 19/05, C22C 29/02, Publ. Mar 10, 2016.Google Scholar
  11. 11.
    V. N. Salivon and A. A. Kozakov, Age-Hardened Nickel-Based Alloy, Patent 2016119 Russian Federation, MPK C22C 19/05, Publ. Jul 15, 1994.Google Scholar
  12. 12.
    E. N. Kablov, Heat-resistant structural materials,” Liteinoye Proiz., No. 7, 2–7 (2005).Google Scholar
  13. 13.
    O. I. Dukhota and O. V. Tisov, “Studying wear resistance of heat-resistant composite alloys in hightemperature fretting,” Prob. Ter. Znosh., No. 53, 195–200 (2010).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • G. P. Dmitrieva
    • 1
  • T. S. Cherepova
    • 1
  • A. I. Dukhota
    • 2
  • V. I. Nichiporenko
    • 1
  1. 1.G. V. Kurdyumov Institute for Metal PhysicsNational Academy of Sciences of UkraineKyivUkraine
  2. 2.National Aviation UniversityKyivUkraine

Personalised recommendations