Effect of Graphene Nanoplatelets on Microstructure and Mechanical Properties of AlSi10Mg Nanocomposites Produced by Hot Extrusion

  • A. Saboori
  • R. Casati
  • A. Zanatta
  • M. Pavese
  • C. Badini
  • M. Vedani
Article
  • 10 Downloads

In this research, AlSi10Mg composites reinforced with graphene nanoplatelets (GNPs) were fabricated in order to study the effect of GNPs on microstructure and mechanical properties of the AlSi10Mg alloy. The composites were produced by a wet mixing method followed by two-step hot consolidation (hot compaction then hot extrusion) at 673 K (400°C). The weight percentages of GNPs were 0.5 and 1 wt.% with respect to the AlSi10Mg alloy. Tensile and Vickers hardness tests at room temperature were performed to evaluate the effect of GNPs on mechanical properties of asfabricated composite. The outcomes show that the high quantity of GNPs (>0.5 wt.%) deteriorates the mechanical properties of AlSi10Mg composite due to the agglomeration of GNPs and, as a consequence, introduction of internal porosity in the composite. However, it is found that relatively low fraction of GNPs can uniformly be dispersed in the Al alloy matrix through the wet mixing method. The hardness and tensile results demonstrated that the mechanical properties improve slightly through the addition of 0.5 wt.% of GNPs, while 1.0 wt.% GNPs addition did not lead to improved performance owing to overwhelming effects of porosity.

Keywords

metal matrix composite hot consolidation graphene mechanical properties microstructure 

References

  1. 1.
    Z. Fan, A. Marconnet, S. T. Nguyen, et al., “Effects of heat treatment on the thermal properties of highly nanoporous graphene aerogels using the infrared microscopy technique,” Int. J. Heat Mass Transf., 76, 122 (2014).CrossRefGoogle Scholar
  2. 2.
    A. Saboori, M. Pavese, C. Badini, et al., “A novel approach to enhance the mechanical strength and electrical and thermal conductivity of Cu–GNP nanocomposites,” Metall. Mat. Trans. A, 49, 333 (2018).CrossRefGoogle Scholar
  3. 3.
    A. Saboori, S. K. Moheimani, M. Pavese, et al., “New nanocomposite materials with improved mechanical strength and tailored coefficient of thermal expansion for electro-packaging applications,” Metals, 7, 536 (2017).CrossRefGoogle Scholar
  4. 4.
    A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., 6, No. 3, 183 (2007).CrossRefGoogle Scholar
  5. 5.
    X. Lin, X. Liu, J. Jia, et al., “Electrical and mechanical properties of carbon nanofiber/graphene oxide hybrid papers,” Compos. Sci. Technol., 100, 166 (2014).CrossRefGoogle Scholar
  6. 6.
    A. Saboori, M. Pavese, C. Badini, et al., “Development of Al- and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization,” Front. Mater. Sci., 11, 171 (2017).CrossRefGoogle Scholar
  7. 7.
    E. Zaminpayma and P. Nayebi, “Mechanical and electrical properties of functionalized graphene nanoribbon: A study of reactive molecular dynamic simulation and density functional tight-binding theory,” Phys. B: Condens. Matter., 459, 29 (2015).CrossRefGoogle Scholar
  8. 8.
    M. Asif, T. Yi, L. Pan, et al., “Thickness controlled water vapors assisted growth of multilayer graphene by ambient pressure chemical vapor deposition,” J. Phys. Chem. C., 119, 3079 (2015).CrossRefGoogle Scholar
  9. 9.
    Y. Lei, J. Sun, and X. Gong, “Mechanical and vibrational responses of gatetunable graphene resonator,” Phys. B: Condens. Matter., 461, 61 (2015).CrossRefGoogle Scholar
  10. 10.
    A. Saboori, C. Novara, M. Pavese, et al., “An investigation on the sinterability and compaction behavior of Aluminum/Graphene nanoplatelets (GNPs) prepared by powder metallurgy,” J. Mater. Eng. Perform., 26, 993–999 (2017).CrossRefGoogle Scholar
  11. 11.
    V. Vijayaraghavan, A. Garg, C. H. Wong, et al., “Measurement of properties of graphene sheets subjected to drilling operation using computer simulation,” Measurement, 50, 50 (2014).CrossRefGoogle Scholar
  12. 12.
    A. Saboori, M. Pavese, C. Badini, et al., “A novel Cu–GNPs nanocomposites with improved thermal and mechanical properties,” Acta Metall. Sin. (Engl. Lett.) (2017).Google Scholar
  13. 13.
    Y. Y. Zhang, C. M. Wang, Y. Cheng, et al., “Mechanical properties of bilayer graphene sheets coupled by sp 3 bonding,” Carbon, 49, No. 13, 4511 (2011).CrossRefGoogle Scholar
  14. 14.
    N. Hong, J. Zhan, X. Wang, et al., “Enhanced mechanical, thermal and flame retardant properties by combining graphene nanosheets and metal hydroxide nanorods for Acrylonitrile–Butadiene–Styrene copolymer composite,” Compos. Part A: Appl. Sci. Manuf., 64, 203 (2014).CrossRefGoogle Scholar
  15. 15.
    K. Hu, D. D. Kulkarni, I. Choi, et al., “Graphene-polymer nanocomposites for structural and functional applications,” Prog. Polym. Sci., 39, No. 11, 1934 (2014).CrossRefGoogle Scholar
  16. 16.
    A. Saboori, M. Pavese, C. Badini, et al., “Microstructure and thermal conductivity of Al–Graphene composites fabricated by powder metallurgy and hot rolling techniques,” Acta. Metall. Sin. (Engl. Let.), 30, No. 7, 675 (2017).CrossRefGoogle Scholar
  17. 17.
    J. Ma, Q. Meng, I. Zaman, et al., “Development of polymer composites using modified, high-structural integrity graphene platelets,” Comp. Sci. Technol., 91, 82 (2014).CrossRefGoogle Scholar
  18. 18.
    S. H. Ryu and A. M. Shanmugharaj, “Influence of long-chain alkylamine-modified graphene oxide on the crystallization, mechanical and electrical properties of isotactic polypropylene nanocomposites,” Chem. Eng. J., 244, 552 (2014).CrossRefGoogle Scholar
  19. 19.
    D. S. Yu, T. Kuila, N. H. Kim, et al., “Enhanced properties of aryl diazonium salt-functionalized graphene/poly(vinyl alcohol) composites,” Chem. Eng. J., 245, 311 (2014).CrossRefGoogle Scholar
  20. 20.
    J. Zhang and D. Jiang, “Molecular dynamics simulation of mechanical performance of graphene/graphene oxide paper based polymer composites,” Carbon, 67, 784 (2014).CrossRefGoogle Scholar
  21. 21.
    K. Wang, Y. Wang, Z. Fan, et al., “Preparation of graphene nanosheet/alumina composites by spark plasma sintering,” Mater. Res. Bull., 46, 315 (2011).CrossRefGoogle Scholar
  22. 22.
    L. S. Walker, V. R. Marotto, M. A. Rafiee, et al., “Toughening in graphene ceramic composites,” ACS Nano, 5, 3182 (2011).CrossRefGoogle Scholar
  23. 23.
    W. J. Kim, T. J. Lee, and S. H. Han, “Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties,” Carbon, 69, 55 (2014).CrossRefGoogle Scholar
  24. 24.
    M. Rashad, F. Pan, A. Tang, et al., “Development of magnesium-graphene nanoplatelets composite,” J. Compos. Mater., 49, 285 (2015).CrossRefGoogle Scholar
  25. 25.
    L. Y. Chen, H. Konishi, and A. Fehrenbacher, “Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites,” Scr. Mater., 67, 29 (2012).CrossRefGoogle Scholar
  26. 26.
    M. Rashad, F. Pan, A. Tang, et al., “Effect of graphene nanoplatelets (GNPs) addition on strength and ductility of magnesium-titanium alloys,” J. Magn. All., 1, 242 (2013).CrossRefGoogle Scholar
  27. 27.
    M. Rashad, F. Pan, M. Asif, and A. Tang, “Powder metallurgy of Mg–1%Al–1%Sn alloy reinforced with low content of graphene nanoplatelets (GNPs),” J. Ind. Eng. Chem., 20, 4250 (2014).CrossRefGoogle Scholar
  28. 28.
    M. Rashad, F. Pan, A. Tang, et al., “Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW–CNTs) on mechanical properties of pure magnesium,” J. Alloys Compd., 603, 111 (2014).CrossRefGoogle Scholar
  29. 29.
    S. F. Bartolucci, J. Paras, M. A. Rafiee, et al., “Graphene–aluminum nanocomposites,” Mater. Sci. Eng. A, 528, 7933 (2011).CrossRefGoogle Scholar
  30. 30.
    J. Wang, Z. Li, G. Fan, et al., “Reinforcement with graphene nanosheets in aluminum matrix composites,” Scr. Mater., 66, No. 8, 594 (2012).CrossRefGoogle Scholar
  31. 31.
    M. Rashad, F. Pan, Z. Yu, et al., “Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets,” Prog. Nat. Sci. Mater. Int., 25, 460–470 (2015).CrossRefGoogle Scholar
  32. 32.
    A. Saboori, M. Pavese, C. Badini, et al., “Effect of sample preparation on the microstructural evaluation of Al–GNPs nanocomposites,” Metallogr. Microstruc. Anal., 6, 619 (2017).CrossRefGoogle Scholar
  33. 33.
    R. Pérez-Bustamante, D. Bolaños-Morales, J. Bonilla-Martínez, et al., “Microstructural and hardness behavior of graphene-nanoplatelets/ aluminum composites synthesized by mechanical alloying,” J. Alloys Compd., 615, 578 (2014).CrossRefGoogle Scholar
  34. 34.
    M. Rashad, F. Pan, A. Tang, and M. Asif, “Effect of Graphene Nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method,” Prog. Nat. Sci. Mater. Int., 24, 101 (2014).CrossRefGoogle Scholar
  35. 35.
    R. Casati and M. Vedani, “Metal matrix composites reinforced by nano-particles – A Review,” Metals, 4, 65–83 (2014).CrossRefGoogle Scholar
  36. 36.
    T. W. Clyne, An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge (1995), p. 26.Google Scholar
  37. 37.
    Z. Zhang and D. L. Chen, “Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength,” Scr. Mater., 54, 1321 (2006).CrossRefGoogle Scholar
  38. 38.
    A. Saboori, Metal Matrix Nanocomposites; Potentials, Challenges, Feasible Solutions, Politecnico di Torino (2017).Google Scholar
  39. 39.
    J. W. Luster, M. Thumann, R. Baumann, “Mechanical properties of aluminium alloy 6061–Al2O3 composites,” Mater. Sci. Technol., 9, 853 (1993).CrossRefGoogle Scholar
  40. 40.
    R. M. Aikin Jr and L. Christodoulou, “The role of equiaxed particles on the yield stress of composites,” Scr. Metall. Mater., 25, 9 (1991).CrossRefGoogle Scholar
  41. 41.
    K. Chu, Z. Liu, C. Jia, et al., “Thermal conductivity of SPS consolidated Cu/diamond composites with Crcoated diamond particles,” J. Alloys Compd., 490, 453 (2010).CrossRefGoogle Scholar
  42. 42.
    A. Yu, P. Ramesh, M. E. Itkis, et al., “Graphite nanoplatelet–epoxy composite thermal interface materials,” J. Phys. Chem. C, 111, 7565 (2007).CrossRefGoogle Scholar
  43. 43.
    M. Bastwros, G. Kim, C. Zhu, et al., “Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering,” Compos. Part B, 60,111–118 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. Saboori
    • 1
  • R. Casati
    • 2
  • A. Zanatta
    • 2
  • M. Pavese
    • 1
  • C. Badini
    • 1
  • M. Vedani
    • 2
  1. 1.Department of Applied Science and TechnologyPolitecnico di TorinoTorinoItaly
  2. 2.Department of Mechanical EngineeringPolitecnico di MilanoMilanoItaly

Personalised recommendations