Powder Metallurgy and Metal Ceramics

, Volume 56, Issue 9–10, pp 581–588 | Cite as

Interaction of Ground SmCo4.8Zr0.2 Alloy with Hydrogen

  • I. I. Bulyk
  • I. V. Borukh

The hydrogen pressure and reaction time were studied during disproportionation of the ground SmCo4.8Zr0.2 alloy. The alloy ground at ν = 100 rpm for τ = 24 h disproportionates at 0.5 MPa hydrogen pressure within 15–30 min, the alloy ground at ν = 200 rpm for τ = 6 and 12 h disproportionates at 0.5 MPa hydrogen pressure, and the alloy ground at ν = 300 rpm for τ = 6 h disproportionates into SmHx and ht-Co below 0.1 MPa hydrogen pressure. Residues of the CaCu5–type ferromagnetic phase were found among the disproportionation products.


disproportionation mechanochemical grinding hydrogen phase transformation magnetic material samarium–cobalt alloys X-ray diffraction 


  1. 1.
    J. P. Liu, E. Fullerton, O. Gutfleisch, and D. J. Sellmyer, Nanoscale Magnetic Materials and Applications, Springer, London (2009), p. 731.CrossRefGoogle Scholar
  2. 2.
    N. Poudyal and J. P. Liu, “Advances in nanostructured permanent magnets research,” J. Phys. D: Appl. Phys., 46, 1–23 (2013).Google Scholar
  3. 3.
    O. Gutfleisch, M. A. Willard, E. Brück, et al., “Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient,” J. Adv. Mater., 23, 821–842 (2011).CrossRefGoogle Scholar
  4. 4.
    N. Cannesan and I. R. Harris, “Aspects of NdFeB HDDR powders: fundamentals and processing,” in: G. C. Hadjipanayis (ed.), Bonded Magnets, NATO Science Series: II. Mathematics, Physics and Chemistry (2002), Vol. 118, pp. 13–36.Google Scholar
  5. 5.
    I. I. Bulik and V. V. Panasyuk, “Hydrogen as a process environment to form nanostructure in ferromagnetic Sm–Co alloys,” Fiz. Khim. Mekh. Mater., 48, No. 1, 9–18 (2012).Google Scholar
  6. 6.
    I. I. Bulyk and V. V. Burkhovetsky, “Variation in microstructure of ground SmCo5 alloy during disproportionation in hydrogen and recombination,” Powder Metall. Met. Ceram., 54, No. 9–10, 614–623 (2015).Google Scholar
  7. 7.
    I. I. Bulyk, V. N. Varyukhin, V. Yu. Tarenkov, et al., “Effect of hydrogen treatment on the microstructure and magnetic properties of KS37 alloys (SmCo5—substrate),” Fiz. Tekh. Vys. Davl., 23, No. 4, 67–82 (2013).Google Scholar
  8. 8.
    K. Suresh, R. Gopalan, G. Bhikshamaiah, et al., “Phase formation, microstructure and magnetic properties investigation in Cu and Fe substituted SmCo5 melt-spun ribbons,” J. Alloys Compd., 463, 73–77 (2008).CrossRefGoogle Scholar
  9. 9.
    K. Suresh, R. Gopalan, D. V. Sridhara Rao, et al., “Microstructure and coercivity variation in melt-spun Sm–Co–Fe–Zr ribbons,” Intermetallics, 18, 2244–2249 (2010).CrossRefGoogle Scholar
  10. 10.
    H. Zaigham and F. A. Khalid, “Characterization of Sm–Co–Sn alloys,” Mater. Charact., 61, 1274–1280 (2010).CrossRefGoogle Scholar
  11. 11.
    R. Gopalan, T. Ohkubo, and K. Hono, “Platelet microstructure and magnetic properties in rapidly solidified Sm20.8Co63.4Fe7.9Cu2.4Zr1.6B4 ribbons,” Scr. Mater., 53, 367–371 (2005).CrossRefGoogle Scholar
  12. 12.
    K. Suresh, R. Gopalan, A. K. Singh, et al., “Coercivity of Sm(Co0.9Cu0.1)4.8 melt-spun ribbons,” J. Alloys Compd., 436, 358–363 (2007).CrossRefGoogle Scholar
  13. 13.
    X. B. Liu and Z. Altounian, “Magnetic moments and exchange interaction in Sm(Co, Fe)5 from firstprinciples,” Comput. Mater. Sci., 50, 841–846 (2011).CrossRefGoogle Scholar
  14. 14.
    Y. Zhang, A. Gabay, Y. Wang, and G. C. Hadjipanayis, “Microstructure, microchemistry, and coercivity in Sm–Co–Cu and Pr–Co–Cu 1:5 alloys,” J. Magn. Magn. Mater., 272–276, e1899–e1900 (2004).Google Scholar
  15. 15.
    R. F. Sabirianov, A. Kashyap, R. Skomski, et al., “First principles study of transition-metal substitutions in Sm–Co permanent magnets,” J. Appl. Phys. Lett., 85, No. 12, 2286–2288 (2008).CrossRefGoogle Scholar
  16. 16.
    A. A. Kündig, R. Gopalan, T. Ohkubo, and K. Hono, “Coercivity enhancement in melt-spun SmCo5 by Sn addition,” Scr. Mater., 54, 2047–2051 (2006).CrossRefGoogle Scholar
  17. 17.
    Z. Yao, Q. Xu, and C. Jiang, “Structural and magnetic properties of SmCo5.6Ti0.4 alloy,” J. Magn. Magn. Mater., 320, 1717–1721 (2008).CrossRefGoogle Scholar
  18. 18.
    T. Saito and D. Nishio-Hamane, “Magnetic properties of SmCo5–xFex (x = 0–4) melt-spun ribbon,” J. Alloys Compd., 585, 423–427 (2014).CrossRefGoogle Scholar
  19. 19.
    J. Zhou, R. Skomski, and D. J. Sellmyer, “Coercivity of titanium-substituted high-temperature permanent magnets,” J. IEEE Trans. Magn., 37, 2518–2520 (2001).CrossRefGoogle Scholar
  20. 20.
    R. S. K. Valiveti, A. Ingmire, C. Baudot, and J. E. Shield, “Microstructural selection in conventionally and rapidly solidified Sm–Co–T alloys,” J. Alloys Compd., 493, 95–98 (2010).CrossRefGoogle Scholar
  21. 21.
    A. Handstein, M. Kubis, O. Gutfleisch, et al., “HDDR of Sm–Co alloys using high hydrogen pressures,” J. Magn. Magn. Mater., 192, 73–76 (1999).CrossRefGoogle Scholar
  22. 22.
    I. I. Bulyk, A. M. Trostyanchyn, and V. I. Markovich, “Phase transformations in SmCo5-based alloy initiated by hydrogen at 650 kPa pressure,” Fiz. Khim. Mekh. Mater., No. 1, 94–98 (2007).Google Scholar
  23. 23.
    I. I. Bulyk, V. I. Markovich, and A. M. Trostyanchyn, “Features of solid HDDR in SmCo5-based alloys in low-pressure hydrogen,” Fiz. Khim. Mekh. Mater., No. 4, 121–126 (2008).Google Scholar
  24. 24.
    I. I. Bulyk, V. V. Burkhovetsky, and A. M. Trostyanchyn, “Change in phase and structural state of SmCo5-based alloy in solid HDDR in low-pressure hydrogen,” Metallofiz. Noveish. Tekhnol., No. 2, 169–184 (2015).Google Scholar
  25. 25.
    I. I. Bulyk, A. M. Trostyanchyn, and P. Ya. Lyuty, “Effect from the length of interaction between SmCo5-based alloy and low-pressure hydrogen on the phase composition,” Fiz. Khim. Mekh. Mater., No. 3, 53–58 (2012).Google Scholar
  26. 26.
    I. I. Bulyk, V. I. Markovich, A. M. Trostyanchyn, and V. A. Chervatyuk, “Hydrogen-initiated phase transformations in Sm–Co alloy under the action of ultrasound,” Fiz. Khim. Mekh. Mater., No. 5, 71–75 (2007).Google Scholar
  27. 27.
    I. I. Bulyk and A. M. Trostyanchyn, “Dependence of the phase composition of disproportionated SmCo5-based alloy on temperature and length of recombination,” Metallofiz. Noveish. Tekhnol., 38, No. 4, 511–519 (2016).CrossRefGoogle Scholar
  28. 28.
    I. I. Bulyk, A. M. Trostyanchyn, P. Ya. Lyuty, and V. V. Burkhovetsky, “Interaction between hydrogen and ground SmCo5 alloy,” Powder Metall. Met. Ceram., 52, No. 9–10, 530–538 (2013).Google Scholar
  29. 29.
    N. Poudyal and J. P. Liu, “Advances in nanostructured permanent magnets research,” J. Phys. D: Appl. Phys., 46, 1–23 (2013).Google Scholar
  30. 30.
    V. A. Goltsov, S. B. Rybalka, D. Fruchart, and V. Didus, “Kinetics and same general features of hydrogen induced diffusive phase transformations in Nd2Fe14B type alloys,” in: V. A. Goltsov (ed.), Progress in Hydrogen Treatment of Materials, Kassiopeya, Donetsk–Coral Gables (2001), pp. 368–390.Google Scholar
  31. 31.
    I. I. Bulyk, I. V. Borukh, and A. M. Trostyanchyn, “Effect of grinding in hydrogen on the phase composition and anisotropy of SmCo4.8Zr0.2 alloy,” Fiz. Khim. Mekh. Mater., No. 4, 41–45 (2015).Google Scholar
  32. 32.
    I. I. Bulyk, R. V. Denis, V. V. Panasyuk, et al., “HDDR process and hydrogen-sorption properties of didymium–aluminum–iron–boron (Dd12.3Al1.2Fe79.4B6) alloy,” Fiz. Khim. Mekh. Mater., No. 4, 15–20 (2001).Google Scholar
  33. 33.
    I. I. Bulyk, Yu. B. Basaraba, A. M. Trostyanchyn, and V. M. Davidov, “Disproportionation in hydrogen and recombination of Laves phases of zirconium and chromium,” Fiz. Khim. Mekh. Mater., No. 3, 101–108 (2005).Google Scholar
  34. 34.
    CCP14, access mode:
  35. 35.
    FullProf Suite, access mode:
  36. 36.
    O. Gutfleisch and I. R. Harris, “Fundamental and practical aspects of the hydrogenation, disproportionation, desorption and recombination process,” J. Phys. D: Appl. Phys., 29, 2255–2265 (1996).CrossRefGoogle Scholar
  37. 37.
    D. L. Leslie-Pelecky and R. L. Schalek, “Effect of disorder on the magnetic properties of SmCo5,” J. Phys. Rev. B, 59, 457–462 (1999).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Karpenko Physicomechanical InstituteNational Academy of Sciences of UkraineLvivUkraine

Personalised recommendations