Powder Metallurgy and Metal Ceramics

, Volume 56, Issue 5–6, pp 355–361 | Cite as

Simulating the Solidification of Boride–Boride Eutectics

  • V. V. Kartuzov
  • O. V. Bystrenko

Computer simulations of structurization in boride–boride ceramics are performed using the standard version of phase-field theory. The simulations reproduce the main properties of eutectic structures observed in experiments, i.e., spatial segregation of components, structure formation from an overcooled melt, and complete decomposition of the system when relaxes toward thermodynamic equilibrium. The eutectic colonies formed in the process of directional solidification and the dependence of spatial parameter of the emerging structures on the solidification rate are reproduced as well. The simulations demonstrate that the ordered fibrous structures are formed only in a certain range of solidification rates.


eutectic boride ceramics directional solidification structure formation phase-field theory 


The authors are grateful to EOARD for financial support of this research effort under project 118003.


  1. 1.
    Y. B. Paderno, V. N. Paderno, V. B. Filippov, et al., “Structure features of the eutectic alloys of borides with the d- and f-transition metals,” Powder Metall. Met. Ceram., 31, No. 8, 700–706 (1992).Google Scholar
  2. 2.
    Y. B. Paderno, “A new class of in-situ fiber reinforced boride composite ceramic materials,” in: Y. M. Haddad (ed.), Proc. NATO Advanced Research Workshop Advanced Multilayered and Fibre-Reinforced Composites, Springer (1998), Vol. 43, pp. 353–369.Google Scholar
  3. 3.
    Chen Chang-Ming, Zhou Wang-Cheng, and Zhang Li-Tong, “Oriented structure and crystallography of directionally solidified LaB6–ZrB2 eutectic,” J. Am. Ceram. Soc., 81, No. 1, 237–240 (1998).CrossRefGoogle Scholar
  4. 4.
    Hongqi Deng, Study of the Interface Behavior in Directionally Solidified LaB 6 –ZrB 2 Eutectics, PhD Thesis, The Pennsylvania State University (2006), p. 194.Google Scholar
  5. 5.
    P. I. Loboda, Directionally Solidified Borides [in Russian], Praimdruk, Kyiv (2012), p. 394.Google Scholar
  6. 6.
    E. A. Goncharenko, T. A. Grechukha, P. F. Zilberman, and V. S. Znamenskii, “Molecular dynamics study of ionic melts resulting from contact melting,” Inorg. Mater., 36, No. 10, 1056–1059 (2000).CrossRefGoogle Scholar
  7. 7.
    S. Brodacka, M. Kozlowski, R. Kozubski, and J. Janczak-Rusch, “Atomistic simulation of the eutectic mixture in bulk and nano-layered Ag–40 at.% Cu alloy,” Comput. Mater. Sci., 89, 30–35 (2014).CrossRefGoogle Scholar
  8. 8.
    A. Pasturel, Emre S. Tasci, Marcel H. F. Sluiter, and N. Jakse, “Structural and dynamic evolution in liquid Au–Si eutectic alloy by ab initio molecular dynamics,” Phys. Rev., B81, 140202 (R) (2010).Google Scholar
  9. 9.
    W. J. Boettinger, J. A. Warren, C. Beckermann, and A. Karma, “Phase-field simulation of solidification,” Annu. Rev. Mater. Res., 32, 163–194 (2002).CrossRefGoogle Scholar
  10. 10.
    I. Singer-Loginova and H. M. Singer, “The phase field technique for modeling multiphase materials,” Rep. Prog. Phys., 71, 106501–106533 (2008).CrossRefGoogle Scholar
  11. 11.
    A. A. Wheeler, G. B. McFadden, and W. J. Boettinger, “Phase-field model for solidification of a eutectic alloy,” Proc. R. Soc. London, 452, 495–525 (1996).CrossRefGoogle Scholar
  12. 12.
    Francois Drolet, K. R. Elder, Martin Grant, and J. M. Kosterlitz, “Phase-field modeling of eutectic growth,” Phys. Rev. E, 61, 6705–6720 (2000).CrossRefGoogle Scholar
  13. 13.
    Daniel Lewis, Tamás Pusztai, László Gránásy, et al., “Phase-field models for eutectic solidification,” J. Miner. Met. Mater. Soc., 56, 34–39 (2004).CrossRefGoogle Scholar
  14. 14.
    D. Danilova and B. Nestler, “Phase-field simulations of solidification in binary and ternary systems using a finite element method,” J. Cryst. Growth, 275, e177–e182 (2005).CrossRefGoogle Scholar
  15. 15.
    N. D. Nyashina and P. V. Trusov, “On potential application of the phase-field model to describe the structure of melt solidification front,” Mat. Model. Sist. Prots., No. 7, 57–66 (1999).Google Scholar
  16. 16.
    B. Bokhonov and M. Korchagin, “In-situ investigation of the formation of eutectic alloys in the systems silicon–silver and silicon–copper,” J. Alloys Compd., 335, 149–156 (2002).CrossRefGoogle Scholar
  17. 17.
    B. Bokhonov and M. Korchagin, “In situ investigation of stage of the formation of eutectic alloys in Si–Au and Si–Al systems,” J. Alloys Compd., 312, 238–250 (2000).Google Scholar
  18. 18.
    O. V. Bystrenko and V. V. Kartuzov, “Contact melting and the structure of binary eutectic near the eutectic point,” J. Alloys Compd., 617, 124–128 (2014).CrossRefGoogle Scholar
  19. 19.
    B. Nestler and A. A. Wheeler, “Phase-field model of multi-phase solidification,” Comput. Phys. Commun., 147, 230–233 (2002).CrossRefGoogle Scholar
  20. 20.
    M. Apel, B. Boettger, H.-J. Diepers, and I. Steinbach, “2D and 3D phase-field simulations of lamella and fibrous eutectic growth,” J. Cryst. Growth, 237–239, 154–158 (2002).Google Scholar
  21. 21.
    I. Steinbach and F. Pezzolla, “A generalized field method for multiphase transformations using interface fields,” Physica D, 134, 385–393 (1999).CrossRefGoogle Scholar
  22. 22.
    A. Logg, K.-A. Mardal, and G. N. Wells (eds.), Automated Solution of Differential Equations by the Finite Element Method: the FEniCS Book, Springer-Verlag, Berlin (2012), p. 671, Scholar
  23. 23.
    I. Loginova, G. Amberg, and J. A. Gren, “Phase-field simulations of non-isothermal binary alloy solidification,” Acta Mater., 49, 573–581 (2001).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations