Powder Metallurgy and Metal Ceramics

, Volume 56, Issue 5–6, pp 333–354 | Cite as

Thermodynamic Properties of Binary Al–Nd Alloys

  • M. O. Shevchenko
  • V. S. Sudavtsova
  • V. G. Kudin
  • L. O. Romanova
  • M. I. Ivanov
Article
  • 20 Downloads

The mixing enthalpies of liquid alloys in the binary Al–Nd system are determined in the ranges 0 < xNd < 0.25 at 1500–1740 K, 0.4 < xNd < 0.64 at 1670–1740 K, and 0.64 < xNd < 1 at 1450–1500 K by isoperibol calorimetry. The melts of the binary Al–Nd system are characterized by significant negative mixing enthalpies: \( \varDelta {H}_{Al- Nd}^{min}=-44.6 kJ/ mol \) at xNd = 0.34 and 1500 K (extrapolation to the overcooled melt region). Activities of components, entropies, Gibbs energies, and liquidus curve of the binary Al–Nd phase diagram are associated using the model of ideal associated solutions.

Keywords

binary Al–Nd system mixing enthalpy entropy activities of components Gibbs energy liquidus model of ideal associated solutions isoperibol calorimetry 

References

  1. 1.
    L. Jin, Y.-B. Kang, P. Chartrand, and C. D. Fuerst, “Thermodynamic evaluation and optimization of Al–La, Al–Ce, Al–Pr, Al–Nd and Al–Sm systems using the Modified Quasichemical Model for liquids,” CALPHAD, 35, No. 1, 30–41 (2011).CrossRefGoogle Scholar
  2. 2.
    A Lanthanide Lanthology, Molycorp Inc., Mountain Pass, CA, USA (1993), p. 66.Google Scholar
  3. 3.
    T. Ohnishi, E. Iwamura, K. Takagi, and K. Yoshikawa, “Developments in Al–Nd interconnections and sputtering targets for liquid crystal displays,” Kobe Steel Eng. Rep., 48, 29–34 (1998).Google Scholar
  4. 4.
    K. H. J. Buschow, “Phase relations and intermetallic compounds in the systems neodymium–aluminum and gadolinium–aluminum,” J. Less-Common Met., 9, 452–456 (1965).CrossRefGoogle Scholar
  5. 5.
    K. A. Jr Gschneidner and F. W. Calderwood, “The Al–Nd (aluminum–neodymium) system,” Bull. Alloys Phase Diagram, 10, 28–30 (1989).CrossRefGoogle Scholar
  6. 6.
    V. I. Kononenko and S. V. Golubev, “On phase diagrams of binary aluminum systems with La, Ce, Pr, Nd, Sm, Eu, Yb, Sc, and Y,” Izv. Akad. Nauk SSSR. Met., 2, 197–199 (1990).Google Scholar
  7. 7.
    G. B. Kale, A. Biswas, and I. G. Sharma, “Modification of the aluminum rich portion of the Nd–Al phase diagram,” Scr. Mater., 37, 999–1003 (1997).CrossRefGoogle Scholar
  8. 8.
    L. Rolla, A. Jandelli, G. Canneri, and R. Vogel, “Contribution to the knowledge of the metals and alloys of the rare earths,” Z. Metallkd., 35, 29–42 (1943).Google Scholar
  9. 9.
    M. E. Drits, E. S. Kadaner, and Dihn Shoa Nguyen, “Solubility of rare earth metals in aluminum in solid state,” Izv. Akad. Nauk SSSR. Met., 1, 219–223 (1969).Google Scholar
  10. 10.
    H. Jones, “The correlation between solid solubility and its temperature dependence for solutes in aluminum,” J. Mater. Sci., 41, 6069–6071 (2006).CrossRefGoogle Scholar
  11. 11.
    T. V. Massalski (ed.), P. R. Subramanian, H. Okamoto, et al., Binary Alloy Phase Diagrams, 2nd ed., in 3 vols., ASM International, Materials Park, Ohio (1990), p. 3589.Google Scholar
  12. 12.
    A. Saccone, A. M. Cardinale, S. Delfino, and R. Ferro, “Phase equilibria in the rare earth metals (R)-rich regions of the R–Al systems (R = La–Ce–Pr–Nd),” Z. Metallkd., 87, 82–87 (1996).Google Scholar
  13. 13.
    E. M. Savitskii, E. S. Stepanov, and V. F. Terekhova, “Neodymium and its alloys with aluminum,” Izv. Akad. Nauk SSSR. Metall. Topl., No. 3, 73–78 (1960).Google Scholar
  14. 14.
    J. Wang, “Thermodynamic evaluation of Al–Nd system,” CALPHAD, 20, No. 2, 135–138 (1996).CrossRefGoogle Scholar
  15. 15.
    N. Clavaguera and Y. Du, “Thermodynamic calculation of the Nd–Al system,” J. Phase Equilib., 17, 107–111 (1996).CrossRefGoogle Scholar
  16. 16.
    G. Cacciamani and R. Ferro, “Thermodynamic modeling of some aluminum-rare earth binary systems: Al–La, Al–Ce, and Al–Nd,” CALPHAD, 25, 583–597 (2001).CrossRefGoogle Scholar
  17. 17.
    G. Cacciamani, A. M. Cardinale, G. Borzone, and R. Ferro, “Thermodynamic modelling and optimization of the Al–Ce–Nd system,” CALPHAD, 27, No. 2, 227–233 (2003).CrossRefGoogle Scholar
  18. 18.
    M. C. Gao, N. Ünlü, G. J. Shiflet, et al., “Reassessment of Al–Ce and Al–Nd binary systems supported by critical experiments and first-principles energy calculations,” Metall. Mater. Trans. A: Phys. Metall. Mater. Sci., 36A, 3269–3279 (2005).CrossRefGoogle Scholar
  19. 19.
    L. Jin, Thermodynamic Modeling of Aluminum–Magnesium–Rare Earth Systems, Thesis for Degree of Philosophical Doctor (Metallurgical Engineering), University of Montreal, Montreal (2012).Google Scholar
  20. 20.
    G. N. Zviadadze, L. A. Chkhikvadze, and M. V. Kereselidze, “Thermodynamic properties of binary alloys of some rare earth metals with aluminum,” Soobshch. Akad. Nauk Gruz. SSR, No. 81, 149–152 (1976).Google Scholar
  21. 21.
    C. Colinet, A. Pasturel, and K. H. J. Buschow, “Molar enthalpies of formation of LnAl2 compounds,” J. Chem. Thermodyn., 17, 1133–1139 (1985).CrossRefGoogle Scholar
  22. 22.
    G. Borzone, A. M. Cardinale, G. Cacciamani, and R. Ferro, “On the thermochemistry of the Nd–Al alloys,” Z. Metallkd., 64, 635–640 (1993).Google Scholar
  23. 23.
    M. C. Gao, A. D. Rollett, and M. Widom, “Lattice stability of aluminum–rare earth binary systems: a firstprinciples approach,” Phys. Rev. B: Condens. Matter Mater. Phys., 75, 174120/1–174120/16 (2007).Google Scholar
  24. 24.
    G. Borzone, N. Parodi, R. Ferro, et al., “Heat capacity and phase equilibria in rare earth alloy systems. Rrich R–Al alloys (R = La, Pr and Nd),” J. Alloys Compd., 320, No. 2, 242–250 (2001).CrossRefGoogle Scholar
  25. 25.
    C. Deenadas, A. W. Thompson, R. S. Craig, and W. E. Wallace, “Low temperature heat capacities of Laves phase lanthanide–aluminum compounds,” J. Phys. Chem. Solids, 32, No. 8, 1853–1866 (1971).CrossRefGoogle Scholar
  26. 26.
    I. Barin and G. Platzki, Thermochemical Data of Pure Substances, VCH, Weinheim (1995), p. 49.CrossRefGoogle Scholar
  27. 27.
    A. T. Dinsdale, “SGTE data for pure elements,” CALPHAD, 15, No. 4, 319–427 (1991).CrossRefGoogle Scholar
  28. 28.
    H. Yamamoto, M. Morishita, and M. Kusumoto, “Determination of standard entropy of formation of Al11Nd3 by heat capacity measurement from near absolute zero Kelvin,” J. Alloys Compd., 433, 1–5 (2007).CrossRefGoogle Scholar
  29. 29.
    H. Yamamoto, M. Morishita, and M. Kusumoto, “Determination of standard Gibbs energy of formation of Al2Nd by solution calorimetry and heat capacity measurement from near absolute zero Kelvin,” Mater. Trans., 47, No. 8, 2044–2048 (2006).CrossRefGoogle Scholar
  30. 30.
    H. Yamamoto and M. Morishita, “Temperature dependence of standard Gibbs energy of formation of Al2Nd from near absolute 0 K to room temperature,” J. Alloys Compd., 456, 40–45 (2008).CrossRefGoogle Scholar
  31. 31.
    M. Morishita, H. Yamamoto, M. Kodera, et al., “Calorimetric study of AlNd2: Heat capacity. Standard Gibbs energy of formation,” Thermochim. Acta, 526, 90–98 (2011).CrossRefGoogle Scholar
  32. 32.
    M. Morishita, K. Ikeda, N. Nishimura, et al., “Standard Gibbs energies of formation of the ferro- and paramagnetic phases of AlNd3,” J. Phys. Chem. C, 116, 20489–20495 (2012).CrossRefGoogle Scholar
  33. 33.
    V. I. Kober, I. F. Nichkov, S. P. Raspopin, and A. G. Osvald, “Thermodynamic properties of neodymium aluminides,” Izv Vuz. Tsvet. Metall., No. 5, 125–127 (1984).Google Scholar
  34. 34.
    V. I. Kober, I. F. Nichkov, S. P. Raspopin, and V. M. Kyzminykh, “Thermodynamic properties of saturated solutions of neodymium with low-melting metals,” in: L. F. Kozin, Thermodynamics of Metallic Systems [in Russian], Nauka, Alma-Ata (1979), Part 2, pp. 72–76.Google Scholar
  35. 35.
    G. N. Zviadadze, A. A. Petrov, and E. K. Kazenas, “Thermodynamics of metallic melts of scandium, yttrium, lanthanum, and neodymium with aluminum,” in: Proc. 9th All-Union Conf. Calorimetry and Chemical Thermodynamics [in Russian], Tbilisi (1982), p. 356.Google Scholar
  36. 36.
    M. V. Kereselidze, G. N. Zviadadze, M. Sh. Pkhachiashvili, et al., “Study of thermodynamic properties of La, Ce, Pr, and Nd alloys with aluminum by electromotive force method,” Soobshch. Akad. Nauk Gruz. SSR, 85, 129–132 (1977).Google Scholar
  37. 37.
    V. G. Shevchenko, V. I. Kononenko, A. L. Sukhman, and I. I. Feodoritov, “Steam pressure and thermodynamic properties of aluminum alloys with neodymium in liquid state,” Zh. Fiz. Khim., 53, No. 2, 314–317 (1979).Google Scholar
  38. 38.
    A. B. Shubin and K. Yu. Shunyaev, “Mixing enthalpies of rare earth metals with aluminum: model calculations,” Rasplavy, No. 1, 44–50 (2010).Google Scholar
  39. 39.
    T. V. Kulikova, A. V. Mayorova, N. I. Il’inykh, and K. Yu. Shunyaev, “Equilibrium composition and thermodynamic properties of Al–Nd and Al–Gd associated solutions,” Rasplavy, No. 4, 8–13 (2008).Google Scholar
  40. 40.
    A. B. Shubin, L. F. Yamshchikov, and S. P. Raspopin, “Evaluation of formation heats of alloys of rare earth and actinoid elements,” Izv. Vuz. Tsvet. Metall., No. 4, 73–76 (1986).Google Scholar
  41. 41.
    A. B. Shubin, “Analytical expression for describing the mixing enthalpies of liquid metallic alloys,” Izv. Vuz. Tsvet. Metall., No. 2, 33–37 (1990).Google Scholar
  42. 42.
    V. A. Rabinovich and Z. Ya. Khavin, Brief Chemical Handbook [in Russian], Khimiya, Leningrad (1977), p. 376.Google Scholar
  43. 43.
    A. M. Cardinale, G. Cacciamani, G. Borzone, and R. Ferro, “Experimental investigation of the Al–Ce–Nd system,” CALPHAD, 27, No. 2, 221–226 (2003).CrossRefGoogle Scholar
  44. 44.
    A. M. Cardinale, D. Macciò, S. Delfino, and A. Saccone, “Experimental investigation of the Nd–Al–Si system,” J. Therm. Anal. Calorim., 103, 103–109 (2011).CrossRefGoogle Scholar
  45. 45.
    L. Battezzati, M. Baricco, and C. Antonione, “Formation and stability of Al–Nd and Al–Nd–Fe metallic glasses,” J. Alloys Compd., 209, No. 1–2, 341–349 (1994).CrossRefGoogle Scholar
  46. 46.
    M. Ivanov, V. Berezutski, and N. Usenko, “Mixing enthalpies in liquid alloys of manganese with the lanthanides,” J. Mater. Res., 102, 277–281 (2011).Google Scholar
  47. 47.
    M. A. Shevchenko, M. I. Ivanov, V. V. Berezutskii, et al., “Thermodynamic properties of Ni–Sc and Ni–Y alloys,” Zh. Fiz. Khim., 88, No. 6, 909–914 (2014).Google Scholar
  48. 48.
    M. I. Ivanov, V. V. Berezutskii, M. O. Shevchenko, et al., “Interaction in alloys of europium-containing systems,” Dop. Nats. Akad. Nauk Ukrainy, No. 8, 90–99 (2013).Google Scholar
  49. 49.
    Y.-B. Kang, A. D. Pelton, P. Chartrand, and C. D. Fuerst, “Critical evaluation and thermodynamic optimization of the Al–Ce, Al–Y, Al–Sc and Mg–Sc binary systems,” CALPHAD, 32, No. 2, 413–422 (2008).CrossRefGoogle Scholar
  50. 50.
    M. O. Shevchenko, V. G. Kudin, V. V. Berezutskii, et al., “Thermodynamic properties of Al–Sc alloys,” Powder Metall. Met. Ceram., 53, No. 3–4, 243–249 (2014).CrossRefGoogle Scholar
  51. 51.
    M. I. Ivanov, V. V. Berezutskii, M. O. Shevchenko, et al., “Thermodynamic properties of Al–Y(La, Eu, Yb) melts,” Dop. Nats. Akad. Nauk Ukrainy, No. 8, 85–90 (2011).Google Scholar
  52. 52.
    V. G. Kudin, M. A. Shevchenko, I. V. Mateiko, and V. S. Sudavtsova, “Thermodynamic properties of Al–La melts,” Zh. Fiz. Khim., 87, No. 3, 364–370 (2013).Google Scholar
  53. 53.
    V. S. Sudavtsova, M. O. Shevchenko, V. V. Berezutskii, et al., “Thermodynamic properties and phase equilibria in binary Al(Si)–Ce alloys,” Zh. Fiz. Khim., 88, No. 5, 736–746 (2014).Google Scholar
  54. 54.
    M. O. Shevchenko, V. V. Berezutskii, M. I. Ivanov, and V. S. Sudavtsova, “Thermodynamic properties of binary Al–Pr alloys,” Powder Metall. Met. Ceram., 55, No. 1–2, 78–90 (2016).CrossRefGoogle Scholar
  55. 55.
    M. O. Shevchenko, V. V. Berezutski, M. I. Ivanov, et al., “Thermodynamic properties of alloys of the binary Al–Sm, Sm–Sn and ternary Al–Sm–Sn systems,” J. Phase Equilib. Diffus., 36, No. 1, 39–52 (2015).CrossRefGoogle Scholar
  56. 56.
    F. R. de Boer, R. Boom, W. C. M. Mattens, et al., Cohesion in Metals. Transition Metal Alloys, North Holland Physics Publishing, Amsterdam (1988), Vol. 1, p. 758.Google Scholar
  57. 57.
    D. S. Kanibolotsky, N. V. Golovataya, O. A. Bieloborodova, and V. V. Lisnyak, “Calorimetric investigation of liquid Al–Ga–Gd alloys,” Thermochim. Acta, 421, 111–115 (2004).CrossRefGoogle Scholar
  58. 58.
    A. Pasturel, C. Chatillon-Colinet, A. Percheron-Guegan, and J. C. Achard, “Thermodynamic study of the valence state of ytterbium in YbAl2 and YbAl3 compounds,” J. Less-Common Met., 90, 21–27 (1983).CrossRefGoogle Scholar
  59. 59.
    G. Cacciamani, S. de Negri, A. Saccone, and R. Ferro, “The Al–R–Mg (R = Gd, Dy, Ho) systems. Part II: Thermodynamic modelling of the binary and ternary systems,” Intermetallics, 11, 1135–1151 (2003).CrossRefGoogle Scholar
  60. 60.
    G. Cacciamani, A. Saccone, S. de Negri, and R. Ferro, “The Al–Er–Mg ternary system. Part II: Thermodynamic modeling,” J. Phase Equilib., 23, No. 1, 38–50 (2002).Google Scholar
  61. 61.
    L. G. Zhang, H. Q. Dong, G. X. Huang, et al., “Thermodynamic assessment of the Al–Cu–Gd system,” CALPHAD, 33, 664–672 (2009).CrossRefGoogle Scholar
  62. 62.
    H. Bo, L. Liu, X. Xiong, and Z. Jin, “Thermodynamic assessment of the Al–Dy, Dy–Zr, and Al–Dy–Zr systems,” Chin. Sci. Bull., 59, No. 15, 1738–1746 (2014).CrossRefGoogle Scholar
  63. 63.
    T. Tokunaga, H. Kominato, S. Iikubo, and H. Ohtani, “Thermodynamic analysis of phase equilibria in the Mg–Al–Ho ternary system,” Mater. Trans., 54, No. 5, 647–655 (2013).CrossRefGoogle Scholar
  64. 64.
    S. Sun, D. Q. Yi, Y. Chen, and C. Wu, “Thermodynamic properties of binary alloys of Al–Er and Si–Er,” Chin. J. Nonferrous Met., 19, No. 9, 1580–1586 (2009).Google Scholar
  65. 65.
    S. Lin, Z. Nie, H. Huang, et al., “Thermodynamic calculation of Er–X and Al–Er–X compounds existing in Al–Mg–Mn–Zr–Er alloy,” Trans. Nonferrous Met. Soc. China, 20, 682–867 (2010).CrossRefGoogle Scholar
  66. 66.
    V. V. Berezutskii, M. A. Shevchenko, M. I. Ivanov, and V. S. Sudavtsova, “Thermodynamic properties of Ni–Eu and Ni–Yb liquid alloys,” Zh. Fiz. Khim., 88, No. 9, 1297–1306 (2014).Google Scholar
  67. 67.
    V. S. Sudavtsova, M. I. Ivanov, V. V. Berezutskii, et al., “Thermodynamic properties of Eu–Sn melts,” Zh. Fiz. Khim., 85, No. 12, 2394–2397 (2011).Google Scholar
  68. 68.
    M. I. Ivanov, N. I. Usenko, V. V. Berezutskii, and N. V. Kotova, Thermodynamics of Binary Melts of Lanthanides with Transition Metals: Monograph [in Ukrainian], Taras Shevchenko Nats. Univ., Kyiv (2012), p. 87.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • M. O. Shevchenko
    • 1
  • V. S. Sudavtsova
    • 1
  • V. G. Kudin
    • 2
  • L. O. Romanova
    • 1
  • M. I. Ivanov
    • 1
  1. 1.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine
  2. 2.Taras Shevchenko National UniversityKievUkraine

Personalised recommendations