Powder Metallurgy and Metal Ceramics

, Volume 56, Issue 5–6, pp 323–332 | Cite as

Interaction of Components in Cu–Fe Glass-Forming Melts with Titanium, Zirconium, and Hafnium. II. Temperature–Concentration Dependence of Thermodynamic Mixing Functions

PHYSICOCHEMICAL MATERIALS RESEARCH

The formalism of the associated solution model for ternary melts with both strongly interacting components and components exhibiting repulsion is described. A set of model parameters that adequately describe the thermodynamic properties of melts of three-component Cu–Fe–(Ti, Zr, Hf) systems and boundary two-component systems is established. The thermodynamic mixing functions of ternary melts are calculated in the entire range of compositions and over a wide range of temperatures. In most of the concentration triangle, the thermodynamic properties of melts are characterized by negative deviations from ideal behavior. The thermodynamic properties of melts adjacent to the copper–iron side of the concentration triangle are characterized by positive deviations from the Raoult law. The range of values and topology of the excess thermodynamic mixing functions of Cu–Fe–(Ti, Zr, Hf) melts are determined by pair interactions of the components.

Keywords

thermodynamic properties liquid alloys alloys of copper and iron with titanium zirconium and hafnium associated solution model amorphous alloys 

References

  1. 1.
    H. G. Krull, R. N. Singh, and F. Sommer, “Generalized association model,” Z. Metallkd., 91, 356–365 (2000).Google Scholar
  2. 2.
    M. A. Turchanin, T. Ya. Velikanova, P. G. Agraval, et al., “Thermodynamic assessment of the Cu–Ti–Zr system. III. Cu–Ti–Zr system,” Powder Metall. Met. Ceram., 47, Nos. 9–10, 586–606 (2008).CrossRefGoogle Scholar
  3. 3.
    S. H. Zhou, J. Schmid, and F. Sommer, “Thermodynamic properties of liquid, undercooled liquid and amorphous Al–Cu–Zr and Al–Cu–Ni–Zr alloys,” Thermochim. Acta, 339, No. 1, 1–9 (1999).CrossRefGoogle Scholar
  4. 4.
    J. O. Andersson, T. Helander, L. Höglund, et al., “Thermo-Calc & DICTRA, computational tools for materials science,” CALPHAD, 26, No. 2, 273–312 (2002).CrossRefGoogle Scholar
  5. 5.
    M. A. Turchanin, P. G. Agraval, and A. R. Abdulov, “Thermodynamic assessment of the Cu–Ti–Zr system. I. Cu−Ti system,” Powder Metall. Met. Ceram., 47, Nos. 5–6, 344–360 (2008).CrossRefGoogle Scholar
  6. 6.
    M. A. Turchanin, P. G. Agraval, and A. R. Abdulov, “Thermodynamic assessment of the Cu–Ti–Zr system. II. Cu–Zr and Ti–Zr systems,” Powder Metall. Met. Ceram., 47, Nos. 7–8, 428–446 (2008).CrossRefGoogle Scholar
  7. 7.
    M. A. Turchanin and P. G. Agraval, “Thermodynamic assessment of the copper−hafnium system,” Powder Metall. Met. Ceram., 47, Nos. 3–4, 223–233 (2008).CrossRefGoogle Scholar
  8. 8.
    M. A. Turchanin, A. R. Abdulov, P. G. Agraval, et al., “Thermodynamic functions of mixing for Fe–Ti melts,” Russian Metallurgy (Metally), 2008, No. 5, 370–376 (2008).CrossRefGoogle Scholar
  9. 9.
    P. G. Agraval, L. A. Dreval, and M. A. Turchanin, “Thermodynamic properties of iron melts with titanium, zirconium, and hafnium,” Powder Metall. Met. Ceram., 55, Nos. 11–12, 707–716 (2017).CrossRefGoogle Scholar
  10. 10.
    P. G. Agraval, L. A. Dreval, and M. A. Turchanin, “Interaction of components in Cu–Fe glass-forming melts with titanium, zirconium, and hafnium. I. Calorimetric study of mixing enthalpies,” Powder Metall. Met. Ceram., 56, Nos. 3–4, 231–238 (2017).CrossRefGoogle Scholar
  11. 11.
    F. Sommer, K. H. Klappert, I. Arpshofen, et al., “Thermodynamic investigations of liquid copper-titanium alloys,” Z. Metallkd., 73, No. 9, 581–584 (1982).Google Scholar
  12. 12.
    M. A. Turchanin, P. G. Agraval, A. N. Fesenko, et al., “Thermodynamics of liquid alloys and metastable phase transformations in the copper–titanium system,” Powder Metall. Met. Ceram., 44, Nos. 5–6, 259–270 (2005).CrossRefGoogle Scholar
  13. 13.
    M. A. Turchanin and S. V. Porokhnya, “Formation enthalpies of liquid alloys of copper with titanium and zirconium,” Rasplavy, No. 5, 29–32 (1995).Google Scholar
  14. 14.
    T. Furukawa and E. Kato, “Thermodynamic properties of liquid iron–titanium alloys by mass spectrometry,” Trans. Iron Steel Inst. Jpn., 61, No. 15, 3060–3068 (1975).CrossRefGoogle Scholar
  15. 15.
    M. A. Turchanin and P. G. Agraval, “Thermodynamics of liquid alloys, stable and metastable phase equilibria in the copper–iron system,” Powder Metall. Met. Ceram., 40, Nos. 7–8, 337–353 (2001).Google Scholar
  16. 16.
    M. A. Turchanin and S. V. Porokhnya, “Thermodynamic of forming liquid copper and iron alloys,” Rasplavy, No. 1, 9–13 (1995).Google Scholar
  17. 17.
    J. P. Morris and G. R. Zellars, “Vapor pressure of liquid copper and activities in liquid Fe–Cu alloys,” J. Met. Trans. AIME, 8, 1086–1091 (1956).Google Scholar
  18. 18.
    L. Timberg, J. M. Toguri, and T. Azakami, “A thermodynamic study of copper-iron and copper-cobalt liquid alloys by mass spectrometry,” Metall. Trans. B, 12B, No. 2, 275–279 (1981).CrossRefGoogle Scholar
  19. 19.
    V. V. Berezutskii, “Thermodynamic properties of liquid alloys of copper with zirconium,” Ukr. Khim. Zh., 59, No. 10, 1051–1053 (1993).Google Scholar
  20. 20.
    A. A. Turchanin, I. A. Tomilin, M. A. Turchanin, et al., “Enthalpies of formation of liquid and amorphous Zr–Cu alloys,” J. Non-Cryst. Solids, 250–252, 582–585 (1999).Google Scholar
  21. 21.
    M. A. Turchanin and I. V. Nikolaenko, “Enthalpies of solution of titanium, zirconium, and hafnium in liquid copper,” J. Alloys Compd., 236, 236–242 (1996).CrossRefGoogle Scholar
  22. 22.
    S. Chatain, B. Larousse, C. Maillault, et al., “Thermodynamic activity measurements of iron in Fe–Zr alloys by high temperature mass spectrometry,” J. Alloys Compd., 457, No. 1, 157–163 (2008).CrossRefGoogle Scholar
  23. 23.
    M. S. Turchanin, P. G. Agraval, and A. R. Abdulov, “Thermodynamics of liquid alloys of iron with zirconium,” Rasplavy, No. 6, 25–29 (2006).Google Scholar
  24. 24.
    V. V. Berezutski and M. I. Ivanov, “Thermodynamics of binary liquid Cu–Hf alloys,” J. Alloys Compd., 306, L1–L2 (2000).CrossRefGoogle Scholar
  25. 25.
    M. A. Turchanin, “Calorimetric research on the heat of formation of liquid alloys of coper with group IIIA and group IVA metals,” Powder Metall. Met. Ceram., 36, No. 5–6, 253–263 (1997).CrossRefGoogle Scholar
  26. 26.
    P. G. Agraval, L. A. Dreval, and M. A. Turchanin, “Enthalpy of mixing of hafnium in liquid iron by hightemperature calorimetry,” J. Alloys Compd., 604, 273–275 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • P. G. Agraval
    • 1
  • L. A. Dreval
    • 1
  • M. A. Turchanin
    • 1
  1. 1.Donbass State Mechanical Engineering AcademyKramatorskUkraine

Personalised recommendations