Powder Metallurgy and Metal Ceramics

, Volume 56, Issue 5–6, pp 305–315 | Cite as

High-Velocity Air Plasma Spraying of (Ti, Cr)C–32 wt.% Ni Clad Powder

  • Yu. S. Borisov
  • A. L. Borisova
  • M. V. Kolomytsev
  • O. P. Masyuchok
  • I. I. Timofeeva
  • M. A. Vasilkovskaya
PROTECTIVE AND FUNCTIONAL POWDER COATINGS
  • 15 Downloads

The influence of air plasma spraying (parameters such as plasma gun power, spraying distance, plasma gas flow, anode diameter) of (Ti, Cr)C–32 wt.% Ni clad powder on the characteristics of resultant coatings (structure, microhardness, porosity, phase composition) is studied. The experimental procedure is designed using the mathematical planning method. The experimental data are processed to derive regression equations, determining the quantitative dependence of average microhardness and stability of microhardness characteristics on spraying process parameters. It is found that plasma gun power and plasma gas flow have the greatest impact on microhardness of the coatings and ΔX/HVav parameter, which characterizes the reproducibility of coating properties. The spraying distance has hardly any influence on the properties studied within the test range (160–220 mm). The hardness of coatings produced from the (Ti, Cr)C–32 wt.% Ni clad powder (12.15–14.58 GPa) is higher than that of the coatings obtained by air plasma spraying of a mechanical mixture of 75 wt.% (Ti, Cr)C + 25 wt.% NiCr (5.3–12.6 GPa).

Keywords

cermets double titanium–chromium carbide clad powder high-velocity air plasma spraying properties of coatings microhardness experimental design 

References

  1. 1.
    D. Toma, W. Brandtt, and G. Marginean, “Wear and corrosion of thermally sprayed cermet coatings,” Surf. Coat. Technol., 138, 149–158 (2001).CrossRefGoogle Scholar
  2. 2.
    P. Sahoo and R. Raghuraman, “High temperature chromium carbides reinforced metal matrix composite coatings for turbomachinery application,” in: Proc. Thermal Spray Conf. (TS’93), DVS-Berichte, Aachen, Germany (1993), pp. 296–300.Google Scholar
  3. 3.
    J. Takeuchi and A. Nakahira, “Cr3C2–NiCr cermet coatings using some HVOF, APS and UPS process,” Proc. Thermal Spray Conf. (TS’93), DVS-Berichte, Aachen, Germany (1993), pp. 11–14.Google Scholar
  4. 4.
    N. Espallargas, J. Berget, J. M. Guilemany, et al., “Cr3C2–NiCr and WC–Ni spray coatings as alternatives to hard chromium for erosion–corrosion resistance,” Surf. Coat. Technol., 202, 1405–1417 (2008).CrossRefGoogle Scholar
  5. 5.
    J. Beczkowiak, J. Fisher, and Y. Schwier, “Cermet materials for HVOF processes,” in: Proc. Thermal Spray Conf. (TS’93), DVS-Berichte, Aachen, Germany (1993), pp. 32–36.Google Scholar
  6. 6.
    H. Keller, E. Pross, and G. Schwier, “Influence of the powder type on the structure and the properties of chromium carbide–nickel chromium,” in: H. C. Starck (ed.), Specialist for Specialties (2000), L11, p. 8.Google Scholar
  7. 7.
    Powder Solutions Catalog, Praxair Surface Technologies (2000), p. 17.Google Scholar
  8. 8.
    Thermal Spray Materials Guide, Sulzer Metco, USA (2011), p. 52.Google Scholar
  9. 9.
    E. Lugscheider, P. Remer, C. Herbst, et al., “NiCr–Cr3C2 and NiCr–TiC high wear resistant coatings for protective applications in steam turbines,” in: Proc. Thermal Spray Conf. (TS’95), DVS-Berichte, Aachen, Germany (1995), pp. 235–240.Google Scholar
  10. 10.
    V. N. Shukla, V. K. Tewari, and R. Jayagantthan, “Comparison of tribological behavior of Cr3C2/NiCr coatings deposited by different thermal spray techniques,” in: Proc. ITSC'2011, DVS-Berichte, Gamburg, Germany (2011).Google Scholar
  11. 11.
    R. Kieffer and F. Benezovsky, Hardmetals [in German], Springer-Verlag, Vienna (1963).Google Scholar
  12. 12.
    I. N. Gorbatov, V. M. Shkiro, A. E. Terentiev, et al., “Studying the properties of thermal spray coatings from nickel–titanium and chromium carbide powders,” Fiz. Khim. Obrab. Mater., No. 4, 102–106 (1991).Google Scholar
  13. 13.
    R. F. Voitovich and E. A. Pugach, “High-temperature oxidation characteristics of the carbides of the group VI transition metals,” Powder Metall. Met. Ceram., 12, No. 4, 314–318 (1973).Google Scholar
  14. 14.
    R. F. Voitovich and E. A. Pugach, Oxidation of Refractory Compounds [in Russian], Naukova Dumka, Kyiv (1968), p. 84.Google Scholar
  15. 15.
    S. S. Kiparisov, Yu. V. Levinskii, and A. P. Petrov, Titanium Carbide: Production, Properties, Application [in Russian], Metallurgiya, Moscow (1987), p. 218.Google Scholar
  16. 16.
    V. B. Raitses, V. M. Litvin, V. P. Rutberg, et al., “Wear-resistant plasma coatings based on a double carbide of titanium and chromium,” Powder Metall. Met. Ceram., 25, No. 10, 827–828 (1986).CrossRefGoogle Scholar
  17. 17.
    Yu. S. Borisov, Powders for Thermal Spraying of Coatings [in Russian], Znanie, Kyiv (1984), p. 15.Google Scholar
  18. 18.
    I. N. Gorbatov, N. S. Il’chenko, A. E. Terentiev, et al., “Effect from cladding of double titanium–chromium carbide on properties of plasma spayed coatings,” Fiz. Khim. Obrab. Mater., No. 3, 81–85 (1991).Google Scholar
  19. 19.
    A. Ya. Kulik, Yu. S. Borisov, A. S. Mnukhin, and M. D. Nikitin, Thermal Spraying of Composite Coatings [in Russian], Mashinostroenie, Leningrad (1985), p. 199.Google Scholar
  20. 20.
    I. N. Gorbatov, A. D. Panasyuk, L. K. Shvedova, et al., “Thermal spray coatings from titanium–chromium carbide composite powders,” Prot. Coat. Met., Issue 25, 22–25 (1991).Google Scholar
  21. 21.
    A. L. Borisova and A. I. Chernets, “Phase and structural transformations in powders of pure and clad double titanium–chromium carbide in a plasma jet,” Probl. SEM, No. 3, 63–72 (1993).Google Scholar
  22. 22.
    Yu. Borisov, M. Kolomytsev, and A. Borisova, “Tungsten carbide–cobalt coatings produced by supersonic air–gas plasma spraying,” in: Proc. 14th Int. Plansee Seminar, Reutte, Austria (1997), Vol. 3, pp. 330–341.Google Scholar
  23. 23.
    Yu. S. Borisov and S. V. Petrov, “Use of supersonic jets in thermal spraying process,” Avtomat. Svarka, No. 1, 24–34 (1993).Google Scholar
  24. 24.
    A. M. Tamrazov, Planning and Analysis of Regression Experiments in Engineering Studies [in Russian], Naukova Dumka, Kyiv (1987), p. 176.Google Scholar
  25. 25.
    Yu. S. Borisov, A. L. Borisova, M. V. Kolomytsev, and O. P. Masyuchok, “Supersonic air fuel thermal spraying of cermet coatings in the titanium–chromium carbide–nichrome system,” Avtomat. Svarka, No. 2, 21–27 (2015).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Yu. S. Borisov
    • 1
  • A. L. Borisova
    • 1
  • M. V. Kolomytsev
    • 1
  • O. P. Masyuchok
    • 1
  • I. I. Timofeeva
    • 2
  • M. A. Vasilkovskaya
    • 2
  1. 1.Paton Electric Welding InstituteNational Academy of Sciences of UkraineKievUkraine
  2. 2.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations