Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 56, Issue 5–6, pp 293–304 | Cite as

Effect of Porosity on Strength and Electrical Conductivity of NiO–3.5YSZ Composite and Its Ni–3.5YSZ Cermet

  • I. O. Polishko
  • Y. M. Brodnikovskyi
  • D. M. Brodnikovskyi
  • B. D. Vasyliv
  • V. Y. Podhurska
  • S. M. Shevchenko
  • V. I. Chedryk
  • M. Andrzejczuk
  • O. D. Vasylyev
REFRACTORY AND CERAMIC MATERIALS

The change in porosity of the Ni–3.5YSZ (ZrO2 stabilized with 3.5 mol.% Y2O3) composite, when produced, and the effect of porosity on the strength and electrical conductivity is studied. The porosity was provided by adding granular starch to the mixture of NiO and 3.5YSZ powders. The content of 18 vol.% pore-forming agent in the Ni–3.5YSZ cermet provides open porosity 47.1%, while its strength and electrical conductivity are 74.3 MPa and 0.93 · 106 S/m, respectively.

Keywords

ceramic fuel cell substrate anode NiO–YSZ composite Ni–YSZ cermet strength electrical conductivity pore-forming agent granulation 

References

  1. 1.
    S. C. Singhal and K. Kendall, High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Elsevier, Oxford, U. K. (2003), p. 406.Google Scholar
  2. 2.
    S. Shaikh, A. Muchtar, and M. Somalu, “A review on selection of anode materials for solid oxide fuel cells,” Ren. Sust. Ener. Rev., 51, 1–8 (2015).CrossRefGoogle Scholar
  3. 3.
    O. Vasylyev, M. Brychevskyi, and Y. Brodnikovskyi, “The structural optimization of ceramic fuel cells,” Univ. J. Chem., 4, No. 2, 31–54 (2016).CrossRefGoogle Scholar
  4. 4.
    F. Tietz, H.-P. Buchkremer, and D. Stover, “Components manufacturing for solid oxide fuel cells,” Sol. St. Ionics, 152–153, 373–381 (2002)Google Scholar
  5. 5.
    H. L. Frandsen, T. Ramos, A. Faes, et al., “Optimization of the strength of SOFC anode supports,” J. Europ. Ceram. Soc., 32, No. 5, 1041–1052 (2012).CrossRefGoogle Scholar
  6. 6.
    D. Kennouche, Y. Chen-Wiegart, K. Yakal-Kremski, et al., “Observing the microstructural evolution of Ni- Yttria-stabilized zirconia solid oxide fuel cell anodes,” Acta Mater., 103, 204–210 (2016).CrossRefGoogle Scholar
  7. 7.
    D. Jung, H. Park, K.-S. Moon, et al., “Effect of microstructure on the electrochemical performance of Ni– ScSZ anodes,” Ceram. Int., 42, No. 10, 11757–11765 (2016).CrossRefGoogle Scholar
  8. 8.
    A. Sarikaya and F. Dogan, “Effect of various pore-forming agents on the microstructural development of tape-cast porous ceramics,” Ceram. Int., 39, 403–413 (2013).CrossRefGoogle Scholar
  9. 9.
    A. Sanson, P. Pinasco, and E. Roncari, “Influence of pore-forming agents on slurry composition and microstructure of tape cast supporting anodes for SOFCs,” J. Europ. Ceram. Soc., 28, 1221–1226 (2008).CrossRefGoogle Scholar
  10. 10.
    B. A. Horri, C. Selomulya, and H. Wang, “Characteristics of Ni/YSZ ceramic anode prepared using carbon microspheres as a pore-forming agent,” Int. J. Hydr. Energy, 37, 15311–15319 (2012).CrossRefGoogle Scholar
  11. 11.
    M. Sharif, F. Golestani, E. Khatibi, et al., “Dispersion and stability of carbon black nanoparticles, studied by ultraviolet–visible spectroscopy,” J. Taiwan Inst. Chem. Eng., 40, 524–527 (2009).Google Scholar
  12. 12.
    M. Kim, J. Lee, and J.-H. Han, “Fabrication of anode support for solid oxide fuel cell using zirconium hydroxide as a pore-forming agent,” J. Power Sources, 196, 2475–2482 (2011).CrossRefGoogle Scholar
  13. 13.
    O. Vasylyev, I. Brodnikovskyi, M. Brychevskyi, et al., “NiO–10Sc1CeSZ anode: structure and mechanical behavior,” Adv. Solid Oxide Fuel Cells III: Ceram. Eng. Sci. Proc., 28, 361–377 (2007).Google Scholar
  14. 14.
    A. D. Vasil’ev, G. Ya. Akimov, and A. Yu. Koval’, “Zirconia ceramics and its prospects in Ukraine,” Ogneup. Tekh. Keram., No. 10, 2–5 (2000).Google Scholar
  15. 15.
    B. S. Prakash, S. S. Kumar, and S. T. Aruna, “Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review,” Ren. Sust. Energy Reviews, 36, 149–179 (2014).CrossRefGoogle Scholar
  16. 16.
    B. A. Horri, C. Selomulya, and H. Wang, “Characteristics of Ni/YSZ ceramic anode prepared using carbon microspheres as a pore-forming agent,” Int. J. Hyd. Energy, 37, 15311–15319 (2012)CrossRefGoogle Scholar
  17. 17.
    L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media [in Russian], Gostekhizdat, Moscow (1957), p. 616.Google Scholar
  18. 18.
    V. I. Odeldevskii, “Calculating the generalized conductivity of heterogenous systems,” Zhur. Tekh. Fiz., 21, No. 6, 667–677 (1951).Google Scholar
  19. 19.
    V. V. Skorokhod, “About electrical conductivity of disperse mixtures of non-conductors with conductors,” Inzh. Fiz. Zhur., 2, No. 8, 51–58 (1959).Google Scholar
  20. 20.
    S. Kim, H. Moon, and S. Hyun, “Ni–YSZ cermet anode fabricated from NiO–YSZ composite powder for high-performance and durability of solid oxide fuel cells,” Sol. St. Ionics, 178, 1304–1309 (2007).Google Scholar
  21. 21.
    Y. Brodnikovskyi, B. Vasyliv, V. Podhurska, et al., “Influence of reduction conditions of NiO on its mechanical and electrical properties,” J. Electrochem. Sci. Eng., 6, No. 1, 113–121 (2016).Google Scholar
  22. 22.
    GOST 2409–2014, Refractories. Method for Determining Apparent Density, Open and Total Porosity, and Water Absorption [in Russian], Standartinform, Moscow (2014).Google Scholar
  23. 23.
    A. Borger, P. Supancic, and R. Danzer, “The ball on three balls test for strength testing of brittle discs – stress distribution in the disc,” J. Europ. Ceram. Soc., 22, 1425–1436 (2002).CrossRefGoogle Scholar
  24. 24.
    R. Danzer, W. Harrer, and P. Supancic, “The ball on three balls test: strength and failure analysis of different materials,” J. Europ. Ceram. Soc., 27, 1481–1485 (2007).CrossRefGoogle Scholar
  25. 25.
    M. Andrzejczuk, O. Vasylyev, I. Brodnikovskyi, et al., “Microstructural changes in NiO–ScSZ composite following reduction processes in pure and diluted hydrogen,” Mater. Characteriz., 87, 159–165 (2014).Google Scholar
  26. 26.
    A. D. Vasilev and S. A. Firstov, “Toughening by pores,” in: Advanced Multi Layered Fiber-Reinforced Composites, Kluwer Academic Publishers, London (1998), pp. 371–384.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • I. O. Polishko
    • 1
  • Y. M. Brodnikovskyi
    • 1
  • D. M. Brodnikovskyi
    • 1
  • B. D. Vasyliv
    • 2
  • V. Y. Podhurska
    • 2
  • S. M. Shevchenko
    • 1
  • V. I. Chedryk
    • 3
  • M. Andrzejczuk
    • 4
  • O. D. Vasylyev
    • 1
  1. 1.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine
  2. 2.Karpenko Physico-Mechanical InstituteNational Academy of Sciences of UkraineLvivUkraine
  3. 3.Pisarzhevskii Institute of Physical ChemistryNational Academy of Sciences of UkraineKievUkraine
  4. 4.Warsaw University of Technology, Faculty of Materials Science and EngineeringWarsawPoland

Personalised recommendations