Powder Metallurgy and Metal Ceramics

, Volume 56, Issue 5–6, pp 245–252 | Cite as

Mechanical Properties and Fracture Mechanisms of Commercially Pure Multilayer Iron Produced by Strip Joint Rolling

  • Yu. F. Lugovskoi
  • Yu. N. Podrezov
  • V. A. Nazarenko
  • D. G. Verbylo
  • O. Yu. Koval
Article
  • 12 Downloads

Multilayer materials (1.2–0.25 mm thick) are produced by sintering in a container at 850°C and cold rolling of ten-layer briquettes of commercially pure iron. It is shown that the tensile strength of the materials studied is proportional to the total true strain value by rolling and reaches 1400 MPa at percentage extension 1%. Endurance limit increases up to 670 MPa. With increasing strain degree by rolling, the structural elements inside layers reduce in size, when high interlayer strength between macro layers. The best correlation of endurance limit of materials with micro yield strength is observed, when 0.01% of residual strain.

Keywords

strength ductility fatigue rolling layers iron 

References

  1. 1.
    M. I. Karpov, V. P. Korzhov, V. M. Kiyko, et al., “Effect of pressure heat treatment on the structure of Ni/Al multilayer composites,” Perspekt. Mater., No. 13, 704–712 (2011).Google Scholar
  2. 2.
    V. P. Korzhov, M. I. Karpov, and D. V. Prokhorov, “Multilayer structure and high-temperature strength of heat-resistant materials based on Nb−Al−Si compounds produced of Nb−Al and Nb−Si composites,” Fiz. Tekh. Vys. Davl., 23, No. 1, 99–107 (2013).Google Scholar
  3. 3.
    S. Yu. Didenko, N. I. Il’chenko, I. M. Neklyudov, and S. L. Bondarenko, “Producing copper–steel multilayer and composite materials by vacuum hot rolling and studying their properties,” Vopr. Atom. Nauk. Tekh., No. 3, 158–160 (2003).Google Scholar
  4. 4.
    I. M. Neklyudov, V. A. Belous, V. N. Voyevodin, et al., “Prospects for the production and use of metal micro laminates produced by vacuum rolling,” Vopr. Atom. Nauk. Tekh., No. 5, 89–94 (2010).Google Scholar
  5. 5.
    Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, “Novel ultra-high straining process for bulk materials development of the accumulative roll-bonding (arb) process,” Acta Mater., 47, No. 2, 579–583 (1999).CrossRefGoogle Scholar
  6. 6.
    S. A. Firstov, N. I. Danilenko, Yu. N. Podrezov, et al., “Investigation of the substructure of sintered iron powder by transmission electron microscopy,” Powder Metall. Met. Ceram., 29, No. 6, 468–471 (1990).CrossRefGoogle Scholar
  7. 7.
  8. 8.
    V. A. Kuzmenko, Acoustic and Ultrasonic Vibrations in Dynamic Tests of Materials [in Russian], AN UkrSSR, Kiev (1963), p. 152.Google Scholar
  9. 9.
    Yu. F. Logovskoi, “Procedure for bending fatigue tests of composites obtained by electron-beam evaporation,” Prob. Spets. Elektrometal., No. 4, 61–65 (1987).Google Scholar
  10. 10.
    Yu. N. Podrezov, N. I. Danilenko, and D. G. Verbilo, “Structural sensitivity of mechanical properties of prestressed BCC-metals,” in: Electron Microscopy and Strength of Materials, Ins. Prob. Mater. NAN Ukrainy, Kiev (1996), pp. 45–61.Google Scholar
  11. 11.
    S. A. Firstov, Yu. N. Podrezov, V. I. Kopylov, and N. I. Danilenko, “Structural sensitivity of mechanical properties of ECAP-processed armco iron,” Metally, No. 1, 54–62 (2004).Google Scholar
  12. 12.
    G. Langford and M. Cohen, “Strain hardening of iron by severe plastic deformation,” Trans. ASM, 62, 623–629 (1965).Google Scholar
  13. 13.
    V. T. Troshchenko and L. A. Sosnovskii, Fatigue Resistance of Metals and Alloys: Handbook [in Russian], Part 2, Nauk. Dumka, Kiev (1987), p. 1100.Google Scholar
  14. 14.
    V. F. Terentyev, “Cyclic strength of sibmicro- and nanocrystalline metals and alloys (Review),” Novi Mater. Tekhnol., No. 1, 8–24 (2010).Google Scholar
  15. 15.
    M. N. Stepnov, Statistical Methods for Processing Mechanical Test Results: Handbook [in Russian], Mashinostroyeniye, Moscow (1985), p. 232.Google Scholar
  16. 16.
    K. O. Gogaev, V. A. Nazarenko, and Yu. F. Lugovskyi, Method of Manufacturing Billets of Metal Laminated Materials [in Ukrainian], Patent for useful model No. 107192 Ukraine, Bull. No. 10, May 25 (2016).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Yu. F. Lugovskoi
    • 1
  • Yu. N. Podrezov
    • 1
  • V. A. Nazarenko
    • 1
  • D. G. Verbylo
    • 1
  • O. Yu. Koval
    • 1
  1. 1.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations