Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 56, Issue 5–6, pp 239–244 | Cite as

Effect of Al2O3 Particles on Bond Strength in the Roll Bonding Process of Al-1050 Bi-Layers

  • M. Heydari Vini
  • M. Sedighi
  • P. Farhadipour
THEORY AND TECHNOLOGY OF FORMING PROCESS
  • 48 Downloads

Aluminum alloy 1050 strips are roll-bonded with interlayer Al2O3 particles. The effect of rolling parameters on the bond strength, such as the content of Al2O3 particles, plastic deformation, and rolling temperature are investigated by peel test. It is established that higher bond strength can be obtained by increasing the rolling temperature, reducing the thickness, and decreasing the alumina content. The peeling surface of samples versus alumina content is characterized by scanning electron microscopy.

Keywords

roll bonding bond strength fracture surface aluminum alumina 

References

  1. 1.
    K. H. W. Seah, J. Hemanth, and S. C. Sharma, “Effect of high-rate heat transfer during casting on the strength, hardness and wear behaviour of aluminium-quartz particulate metal matrix composites,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf., 217, No. 5, 651–659 (2003).CrossRefGoogle Scholar
  2. 2.
    S. V. Prasad and R. Asthana, “Aluminum metal-matrix composites for automotive applications: Tribological considerations,” Tribol. Letters, 17, No. 3, 445–453 (2004).CrossRefGoogle Scholar
  3. 3.
    M. Sedighi, P. Farhadipour, and M. Heydari vini, “Mechanical properties and microstructural evolution of bimetal 1050/Al2O3/5083 composites fabricated by warm accumulative roll bonding,” JOM, 68, No.12, 3193–3200 (2016).CrossRefGoogle Scholar
  4. 4.
    M. Alizadeh, “Effects of temperature and B4C content on the bonding properties of roll-bonded aluminum strips,” J. Mater. Sci., 47, No. 11, 4689–4695 (2012).CrossRefGoogle Scholar
  5. 5.
    O. Emadinia, S. Simões, F. Viana, et al., “Cold rolled versus sputtered Ni/Ti multilayers for reactionassisted diffusion bonding,” Weld. World, 60, No. 2, 337–344 (2016).CrossRefGoogle Scholar
  6. 6.
    H. Alvandi and K. Farmanesh, “Microstructural and mechanical properties of nano/ultra-fine structured 7075 aluminum alloys by accumulative roll-bonding process,” Proc. Mater. Sci.., 11, 17–23 (2015).CrossRefGoogle Scholar
  7. 7.
    V. Jindal, V. C. Srivastava, and R. N. Ghosh, “Development of IF steel–Al multilayer composite by repetitive roll bonding and annealing process,” Mater. Sci. Technol., 24, No. 7, 798–802 (2008).CrossRefGoogle Scholar
  8. 8.
    M. Eizadjou, H. D. Manesh, and K. Janghorban, “Microstructure and mechanical properties of ultra-fine grains (UFGs) aluminum strips produced by ARB,” J. Alloys Comp., 474, Nos. 1–2, 406–415 (2009).Google Scholar
  9. 9.
    R. Jamaati and M. R. Toroghinejad, “The role of surface preparation parameters on cold roll bonding of aluminum strips,” J. Mater. Eng. Perform., 20, No. 2, 191–197 (2011).CrossRefGoogle Scholar
  10. 10.
    M. Reihanian, F. K. Hadadian, and M. H. Paydar, “Fabrication of Al–2 vol.% Al2O3/SiC hybrid composite via accumulative roll bonding (ARB): An investigation of the microstructure and mechanical properties,” Mater. Sci. Eng.: A, 607, 188–196 (2014).Google Scholar
  11. 11.
    M. Abbasi and M. R. Toroghinejad, “Effects of processing parameters on the bond strength of Cu/Cu rollbonded strips,” J. Mater. Proc. Technol., 210, No. 3, 560–563 (2010).CrossRefGoogle Scholar
  12. 12.
    K. S. Suresh, S. Sinha, A. Chaudhary, and S. Suwas, “Development of microstructure and texture in Copper during warm accumulative roll bonding,” Mater. Character., 70, 74–82 (2012).CrossRefGoogle Scholar
  13. 13.
    M. Eizadjou, H. D. Manesh, and K. Janghorban, “Mechanism of warm and cold roll bonding of aluminum alloy strips,” Mater. Design, 30, No. 10, 4156–4161 (2009).CrossRefGoogle Scholar
  14. 14.
    S. Attar, M. Nagaral, H. N. Reddappa, and V. Auradi, “Effect of B4C particulates addition on wear properties of Al7025 alloy composites,” Am. J. Mater. Sci., 5(3C), 53–57 (2015).Google Scholar
  15. 15.
    M. Hosseini and H. Danesh Manesh, “Bond strength optimization of Ti/Cu/Ti clad composites produced by roll-bonding,” Mater. Design, 81,122–132 (2015).CrossRefGoogle Scholar
  16. 16.
    P. Farhadipour, M. Sedighi, and M. Heydari vini, “Using warm accumulative roll bonding method to produce Al–Al2O3 metal matrix composite,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manufact., 231, No. 5, 889–896 (2017).CrossRefGoogle Scholar
  17. 17.
    A. Fattah-Alhosseini, A. Naseri, and M. H. Alemi, “Corrosion behavior assessment of finely dispersed and highly uniform Al/B4C/SiC hybrid composite fabricated via accumulative roll bonding process,” J. Manufact. Proc., 22, 120–126 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Mobarakeh BranchIslamic Azad UniversityMobarakehIran
  2. 2.School of Mechanical EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations