Skip to main content
Log in

W–Cu System: Synthesis, Modification, and Applications

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

W–Cu composites, as a traditional material, have attracted tremendous research interest in fields such as electric engineering, electronic information, aerospace, weapons, etc., owing to their excellent properties. This critical review presents and discusses the current development of W–Cu composites. After introduction of the synthesis methods for W–Cu composites, including the conventional and modern preparation approaches, we focus on the description of the improvement of mechanical properties and arc-erosion properties by modification techniques. Finally, the advantages of W–Cu composites in applications such as electrical contacts, electronic packaging materials, and heat sinks, as well as military materials, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. K. V. Sebastian and G. S. Tendolkar, “High density tungsten–copper liquid phase sintering composites from co-reduced oxide powders,” Int. J. Powder Metall., 15, 45–53 (1979).

    Google Scholar 

  2. F. A. Da Costa, A. G. P. da Silvab, U. U. Gomes, “The influence of the dispersion technique on the characteristics of the W–Cu powders and on the sintering behavior,” Powder Technol., 134, 123–132 (2003).

    Article  Google Scholar 

  3. A. Upadhyaya and R. M. German, “Densification and dilation of sintered W–Cu alloys,” Int. J. Powder Metall., 34, 43–55 (1998).

    Google Scholar 

  4. S. Nigarura and L. Desrosiers, “High performance tungsten–copper composites for electrical contacts,” Met. Powder Rep., 53, 37–44 (1998).

    Google Scholar 

  5. Y. F. Meng, J. P. Zhang, et al., “Microstructures and properties of W–Cu functionally graded composite coatings on copper substrate via high-energy mechanical alloying method,” Adv. Powder Technol., 26, 382–400 (2015).

    Article  Google Scholar 

  6. N. F. Shkodich, A. S. Rogachev, et al., “Bulk Cu–Cr nanocomposites by high-energy ball milling and spark plasma sintering,” J. Alloys Compd., 617, 39–46 (2014).

    Article  Google Scholar 

  7. J. G. Cheng, L. Wan, et al., “Fabrication of W–20 wt.% Cu alloys by powder injection molding,” J. Mater. Process. Techol., 210, 137–142 (2010).

    Article  Google Scholar 

  8. I. H. Moon, M. K. Kang, et al., “MIM of the nanocomposite W–Cu powders,” in: Proc. 1994 Powder Metallurgy World Congress, EPMA, Paris (1994), p. 1807.

  9. A. G. Hamidi, H. Arabi, and S. Rastegari, “Tungsten–copper composite production by activated sintering and infiltration,” Int. J. Refract. Met. Hard Mater., 29, 538–541 (2011).

    Article  Google Scholar 

  10. J. L. Fan, T. Liu, et al., “Synthesis of ultrafine/nanocrystalline W–(30–50)Cu composite powders and microstructure characteristics of the sintered alloys,” Int. J. Refract. Met. Hard Mater., 30, 33–37 (2012).

    Article  Google Scholar 

  11. V. N. Eremenko, R. V. Minakova, et al., “Solubility of tungsten in copper–nickel melts,” Powder Metall. Metal. Ceram., 16, No. 4, 283–286 (1977).

    Article  Google Scholar 

  12. J. L. Johnson and R. M. German, “Chemically activated liquid phase sintering of tungsten–copper,” Int. J. Powder Metall., 30, No. 1, 91–92 (1944).

    Google Scholar 

  13. J. L. Johnson and R. M. German, “Phase equilibria effects on the enhanced liquid phase sintering of W–Cu,” Metall. Mater. Trans. A, 24, No. 11, 2369–2377 (1933).

    Article  Google Scholar 

  14. R. M. German, G. L. Messing, and R. G. Cornwall (eds.), Sintering Technology, Marcel Dekker, New York (1996), pp. 237–244.

    Google Scholar 

  15. F. Doré, S. Lay, et al., “Segregation of Fe during the sintering of doped W–Cu alloys,” Sci. Mater., 49, 237–242 (2003).

    Google Scholar 

  16. S. S. Ryu, Y. D. Kim, and I. H. Moon, “Dilatometric analysis on the sintering behavior of nanocrystalline W–Cu prepared by mechanical alloying,” J. Alloys Compd., 335, 233–240 (2002).

    Article  Google Scholar 

  17. Y. V. Bykov, K. I. Rybakov, and V. E. Semenov, “High-temperature microwave processing of materials,” J. Phys. D Appl. Phys., 34, R55–R75 (2001).

    Article  Google Scholar 

  18. M. Bhattacharya and T. Basak, “A review on the susceptor assisted microwave processing of materials,” Energy, 97, 306–338 (2016).

    Article  Google Scholar 

  19. L. Xu, C. Srinivasakannan, et al., “Fabrication of tungsten copper alloys by microwave hot pressing sintering,” J. Alloys Compd., 658, 23–28 (2016).

    Article  Google Scholar 

  20. Y. L. Guo, J. H. Yi, et al., “Microwave sintering of W–Cu contact materials,” J. Cent. South Univ., 40, No. 3, 670–675 (2009).

    Google Scholar 

  21. Y. L. Guo, J. H. Yi, et al., “Fabrication of W–Cu composites by microwave infiltration,” J. Alloys Compd., 492, L75–L78 (2010).

    Article  Google Scholar 

  22. K. Wang, X. P. Wang, et al., “The study on the microwave sintering of tungsten at relatively low temperature,” J. Nucl. Mater., 431, 206–211 (2012).

    Article  Google Scholar 

  23. S. D. Luo, J. H. Yi, et al., “Microwave sintering W–Cu composites: analyses of densification and microstructural homogenization,” J. Alloys Compd., 473, L5–L9 (2009).

    Article  Google Scholar 

  24. X. Q. Tang, H. B. Zhang, et al., “Fabrication of W–Cu functionally graded material by spark plasma sintering method,” Int. J. Refract. Met. Hard Mater., 42, 193–199 (2014).

    Article  Google Scholar 

  25. A. Elsayed, W. Li, et al., “Experimental investigations on the synthesis of W–Cu nanocomposite through spark plasma sintering,” J. Alloys Compd., 639, 373–380 (2015).

    Article  Google Scholar 

  26. E. Autissier, M. Richou, et al., “Elaboration and thermomechanical characterization of W/Cu functionally graded materials produced by Spark Plasma Sintering for plasma facing components,” Fusion Eng. Des., 98–99, 1929–1932 (2015).

    Article  Google Scholar 

  27. Z. X. Zheng, W. Xia, et al., “Numerical simulation of tungsten alloy in powder injection molding process,” Trans. Nonferrous Met. Soc., 18, 1209–1215 (2008).

    Article  Google Scholar 

  28. J. K. Lee, “On the effect of substituting copper powder with cupric salt for the sintering process of W–Cu MIM Parts,” Int. J. Refract. Met. Hard Mater., 26, 290–294 (2008).

    Article  Google Scholar 

  29. W. G. Chen and B. J. Ding, “The process and research of W–Cu matrix composites,” Powder Metall. Ind., 11, No. 3, 45–50 (2001).

    Google Scholar 

  30. D. F. Heaney, Handbook of Metal Injection Molding, Woodhead Press, USA (2012), pp. 50–63.

    Book  Google Scholar 

  31. X. M. Guo and Y. J. Wu, “Preparation technology and research developments of metal powders used for metal injection molding,” Rare Met. Mater. Eng., 39 (suppl. 1), 496–500 (2010).

    Google Scholar 

  32. T. Lin, S. Yin, and Y. P. Wei, “In-situ reaction used in producing composites by casting process,” Mater. Rev., 14, 30–31 (2001).

    Google Scholar 

  33. S. C. Gill, M. Zimmermann, and W. Kurz, “Resolidification of the Al–Al2Cu eutectic the coupled zone,” Acta Mater., 40, No. 11, 2895–2906 (1992).

    Article  Google Scholar 

  34. Z. E. Liu, Fundamentals of Materials Science and Engineering, 2nd ed., Northwestern Polytechnical University Press, China (2003), pp. 232–262.

    Google Scholar 

  35. S. H. Liang, R. Hu, and Z. K. Fan, “Microstructure and properties of CuCr series pseudobinary alloy by arc melting,” Spec. Cast. Nonferrous Alloys, No. 4, 25–26 (2000).

  36. F. Zhao, H. Xu, et al., “Preparation of CuCr25 alloys through vacuum arc-smelting and their properties,” Trans. Nonferrous Met. Soc., 10, No. 1, 73–75 (2000).

    Google Scholar 

  37. Y. M. Shi, Y. H. Xu, et al., “Preparation of fiber-structured W/Cu contact materials,” Foundry Technol., 27, No. 1, 1238–1240 (2006).

    Google Scholar 

  38. L. H. Duan, W. S. Lin, et al., “Thermal properties of W–Cu composites manufactured by copper infiltration into tungsten fiber matrix,” Int. J. Refract. Met. Hard Mater., 46, 96–100 (2014).

    Article  Google Scholar 

  39. S. H. Liang, L. Chen, et al., “Infiltrated W–Cu composites with combined architecture of hierarchical particulate tungsten and tungsten fibers,” Mater. Charact., 110, 33–38 (2015).

    Article  Google Scholar 

  40. X. H. Yang, P. Xiao, et al., “Alloying effect of Ni and Cr on the wettability of copper on W substrate,” Acta Metall. Sinica, 21, 369–379 (2008).

    Article  Google Scholar 

  41. K. Zangeneh-Madar, M. Amirjan, and N. Parvin, “Improvement of physical properties of Cu-infiltrated W compacts via electroless nickel plating of primary tungsten powder,” Surf. Coat. Technol., 203, 2333–2336 (2009).

    Article  Google Scholar 

  42. G. Song, Y. Wang, and Y. Zhou, “The mechanical and thermophysical properties of ZrC/W composites at elevated temperature,” Mater. Sci. Eng. A, 334, 223–232 (2002).

    Article  Google Scholar 

  43. M. Roosta and H. Baharvandi, “The comparison of W/Cu and W/ZrC composites fabricated through hotpress,” Int. J. Refract. Met. Hard Mater., 28, 587–592 (2010).

    Article  Google Scholar 

  44. X. H. Yang, Z. K. Fan, et al., “Effects of Y2O3 on properties of W–Cu electrical contact materials,” Chin. J. Mater. Res., 21, No. 4, 414–420 (2007).

    Google Scholar 

  45. W. G. Chen, M. Z. Chen, et al., “Effect of doping on electrical arc characteristic of W–Cu electrical contact materials,” Chin. J. Nonferrous Met., 19, No. 1, 2029–2037 (2009).

    Google Scholar 

  46. K. Qian, S. H. Liang, P. Xiao, and X. H. Wang, “In situ synthesis and electrical properties of CuW–La2O3 composites,” Int. J. Refract. Met. Hard Mater., 31, 147–151 (2012).

    Article  Google Scholar 

  47. L. M. Luo, Z. L. Lu, X. M. Huang, et al., “Fabrication of W–Cu/La2O3 composite powder with a novel pretreatment prepared by electroless plating and its sintering characterization,” Int. J. Refract. Met. Hard Mater., 48, 1–4 (2015).

    Article  Google Scholar 

  48. M. Z. Chen, W. G. Chen, et al., “Effects of different Re additives on properties of W–Cu contact materials,” Spec. Cast. Nonferrous Alloys., 28, No. 7, 570–572 (2008).

    Google Scholar 

  49. G. M. Song, Y. Zhou, et al., “Microstructure and elevated temperature strength of ZrCp/W composites,” Chin. J. Nonferrous Met., 9, No. 1, 49–54 (1999).

    Google Scholar 

  50. A. Elsayed, “W–Cu–CNT nanocomposite by vacuum sintering and hot isostatic pressing,” Nanosci. Nanotechnol., No. 1A, 6, 35–38 (2016)

  51. B. H. Tian, X. W. Zhang, et al., “Microstructure and properties of vacuum hot-press sintering W/Cu–Al2O3 composite,” Rev. Adv. Mater. Sci., 33, 219–223 (2013).

    Google Scholar 

  52. K. Zhang, W. Q. Shen, and C. C. Ge, “Comparative study on W/Cu FGMs doping TiC and La2O3,” Powder Metall. Techol., 125, No. 15, 352–354 (2007).

    Google Scholar 

  53. X. L. Shi, H. Yang, G. Q. Shao, et al., “Fabrication and properties of W–Cu alloy reinforced by multiwalled carbon nanotubes,” Mater. Sci. Eng. A, 457, 18–23 (2007).

    Article  Google Scholar 

  54. X. L. Shi, M. Wang, S. Zhang, and Q. X. Zhang, “Fabrication and properties of W20Cu alloy reinforced by titanium nitride coated SiC fibers,” Int. J. Refract. Met. Hard Mater., 41, 60–65 (2013).

    Article  Google Scholar 

  55. L. M. Huang, L. M. Luo, et al., “The influence of TiB2 content on microstructure and properties of W30Cu composites prepared by electroless plating and powder metallurgy,” Adv. Powder Technol., 26, 1058–1063 (2015).

    Article  Google Scholar 

  56. X. H. Yang, Z. K. Fan, S. H. Liang, and P. Xiao, “Effects of TiC on microstructures and properties of CuW electrical contact materials,” Rare Met. Mater. Eng., 36, No. 5, 817–821 (2007).

    Google Scholar 

  57. M. F. Yu, B. S. Files, et al., “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties,” Phys. Rev. Lett., 84, 5552–5555 (2000).

    Article  Google Scholar 

  58. X. H. Yang, J. T. Zou, P. Xiao, and X. H. Wang, “Effects of Zr addition on properties and vacuum arc characteristics of Cu–W alloy,” Vacuum, 106, 16–20 (2014).

    Article  Google Scholar 

  59. J. W. Wang, J. L. Fan, and H. R. Gong, “Effects of Zr alloying on cohesion properties of Cu/W interfaces,” J. Alloys Compd., 661, L553–L556 (2016).

    Article  Google Scholar 

  60. N. Yang, Z. H. Wang, L. Chen, et al., “A new process for fabricating W–15 wt.% Cu sheet by sintering, cold rolling and re-sintering,” Int. J. Refract. Met. Hard Mater., 28, 198–200 (2010).

    Article  Google Scholar 

  61. X. L. Xie, Q. Lin, et al., “Research on the densification of W–30 wt.% Cu composite powder by hot extrusion with steel cup,” Mater. Sci. Eng. A, 578, 187–190 (2013).

    Article  Google Scholar 

  62. W. G. Chen and H. Ye, “Structure and properties of W–Cu25 alloy wire by swaging process,” Powder Metall. Technol., 29, No. 1, 13–20 (2011).

    Google Scholar 

  63. H. P. Guo, W. G. Chen, and H. Zhang, “Characterization of W80–Cu20 alloy sheet prepared by hotrolling,” Rare Met., 32, No. 6, 569–573 (2013).

    Article  Google Scholar 

  64. P. G. Chen, Q. Shen, et al., “Effect of interface modification by Cu-coated W powders on the microstructure evolution and properties improvement for Cu–W composites,” Surf. Coat. Technol., 288, 8–14 (2016).

    Article  Google Scholar 

  65. H. F. Zhou, W. Q. Huang, et al., “Performance of electroless Ni–P coating on W–Cu alloy,” Corros. Sci. Prot. Technol., 21, No. 3, 347–349 (2009).

    Google Scholar 

  66. J. D. Xu, G. Yu, et al., “Preparation of copper coated tungsten powders by intermittent electrodeposition,” Powder Technol., 264, 561–569 (2014).

    Article  Google Scholar 

  67. Z. F. Wang, Z. C. Liu, and G. S. Jiang, “Hermeticity of W–Cu composites for semiconductor package,” Chin. J. Nonferrous Met., 9, No. 2, 323–326 (1999).

    Google Scholar 

  68. C. P. Wu, D. Q. Yi, et al., “Arc erosion behavior of Ag/Ni electrical contact materials,” Mater. Des., 85, 511–519 (2015).

    Article  Google Scholar 

  69. M. Antler, “Survey of contact fretting in electrical connectors,” IEEE Trans. Compon. Hybrids Manuf. Technol., 8, 87–104 (1985).

    Article  Google Scholar 

  70. X. Wei, D. M. Yu, et al., “Arc characteristics and microstructure evolution of W–Cu contacts during the vacuum breakdown,” Vacuum, 107, 83–89 (2014).

    Article  Google Scholar 

  71. B. Liu, W. G. Chen, and Z. J. Zhang, “Tungsten–copper alloy surface nanocrystallization and its properties,” Rare Met. Mater. Eng., 44, No. 12, 3188–3191 (2015).

    Google Scholar 

  72. I. H. Sung, J. W. Kim, H. J. Noh, and H. Jang, “Effect of displacement and humidity on contact resistance of copper electrical contacts,” Tribol. Int., 95, 256–261 (2016).

    Article  Google Scholar 

  73. W. G. Chen, L. L. Dong, et al., “Investigation and analysis of arc ablation on W–Cu electrical contact materials,” J. Mater. Sci. - Mater. Electron., 27, 5584–5591 (2016).

    Article  Google Scholar 

  74. W. D. Schubert, “Aspects of research and development in tungsten and tungsten alloys,” Int. J. Refract. Met. Hard Mater., 11, 151–157 (1992).

    Article  Google Scholar 

  75. F. S. Wang and M. Y. Zhao, “Investigation on high density tungsten alloy and its application in military industry,” Mater. Sci. Eng. Powder Metall., 2, No. 2, 114–120 (1997).

  76. W. G. Chen, Y. G. Kuang, and W. P. Zhou, “Current research status of W–Cu composites for high temperature in China,” Rare Met. Mater. Eng., 33, No. 1, 11–14 (2004).

    Google Scholar 

  77. W. G. Chen and M. Z. Chen, “Design and analysis of gradient sintering between W–Cu alloy and aldary,” High Voltage Apparatus, 46, No. 8, 10–13 (2010).

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from Education Department of Shaanxi Provincial Government Projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenge Chen.

Additional information

Published in Poroshkovaya Metallurgiya, Vol. 56, Nos. 3–4 (514), pp. 67–83, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, L., Chen, W., Hou, L. et al. W–Cu System: Synthesis, Modification, and Applications. Powder Metall Met Ceram 56, 171–184 (2017). https://doi.org/10.1007/s11106-017-9884-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-017-9884-6

Keywords

Navigation