Skip to main content
Log in

Studying the Kinetics and Mechanism of Crystal Growth on Tungsten Wires in Normal Conditions

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The formation and growth of crystalline structures on the surface of tungsten wires at normal pressure in air are studied. It is found that crystalline structures are formed on the oxidized tungsten wires at 980 K. Their shape changes from whiskers to dendrites with increasing temperature during oxidation. The longitudinal and transversal growth rates of the structures are determined. The mechanism of formation and growth of oxide crystals on tungsten wires at high temperatures is proposed. It is proved that carbon atoms on the surface of a tungsten wire are nuclei for WO3 crystallization from the gaseous phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. I. E. Wachs, T. Kim, and E. I. Ross, “Catalysis science of the solid acidity of model supported tungsten oxide catalysts,” Catalysis Today, 116, 162–168 (2006).

    Article  Google Scholar 

  2. A. Hameed, M. I. Ismail Iqbal, M. Aslam, and M. A. Gondal, “Photocatalytic conversion of methane into methanol: performance of silver impregnated WO3,” Appl. Catal. A, 470, 327–335 (2014).

    Article  Google Scholar 

  3. G. D. Barton, S. L. Soled, and E. Iglesia, “Solid acid catalysts based on supported tungsten oxides,” Topics Catal., 6, No. 1–4, 87–99 (1998).

    Article  Google Scholar 

  4. G. Xie, J. Yu, X. Chen, and Y. Jiang, “Gas sensing characteristics of WO3 vacuum deposited thin films,” Sens. Actuators B, 123, No. 2, 909–914 (2007).

    Article  Google Scholar 

  5. V. V. Barelko, V. G. Abramov, and A. G. Merzhanov, “Thermographic method of studying the kinetics of gas-phase heterogeneous catalytic reactions,” Zh. Fiz. Khim., 43, No. 11, 2828–2829 (1969).

    Google Scholar 

  6. S. G. Orlovskaya, M. S. Shkoropado, and F. F. Karimova, “High-temperature oxidation and destruction of metal filaments in air,” Ukr. Fiz. Zh., 56, No. 12, 1312–1315 (2011).

    Google Scholar 

  7. S. G. Orlovskaya, F. F. Karimova, and M. S. Shkoropado, “Formation of oxides on tungsten conductors heated by electric current,” Powder Metall. Met. Ceram., 49, No. 5–6, 351–354 (2010).

    Article  Google Scholar 

  8. P. Kofstad, High Temperature Oxidation of Metals, John Wiley & Son, New York (1966).

    Google Scholar 

  9. I. N. Frantsevich, R. F. Voitovich, and V. A. Lavrenko, High-Temperature Oxidation of Metals and Alloys [in Russian], Gostekhizdat, Kyiv (1963), p. 324.

    Google Scholar 

  10. I. V. Semenova, G. M. Florianovich, and A. V. Khoroshilov, Corrosion and Corrosion Protection: University Textbook [in Russian], Fizmatlit, Moscow (2006), p. 376.

    Google Scholar 

  11. Yu. S. Karabasova, News Materials [in Russian], Mosk. Univ. Stali Splavov, Moscow (2002), p. 736.

    Google Scholar 

  12. S. G. Orlovskaya, M. S. Shkoropado, Yu. A. Shevchenko, and A. O. Odnostalko, “Study of high-temperature heat and mass exchange and oxidation of refractory metal samples in air,” Fiz. Khim. Tverd. Tela, 15, No. 2, 384–387 (2014).

    Google Scholar 

  13. M. T. Chang, L. J. Chou, Y. U. Chueh, et al., “Nitrogen-doped tungsten oxide nanowires: low-temperature synthesis on Si, and electrical, optical and field-emission properties,” Small, 3, No. 4, 658–664 (2007).

    Article  Google Scholar 

  14. T. Tokunaga, T. Kawamoto, K. Tanaka, et al., “Growth and structure analysis of tungsten oxide nanorods using environmental TEM,” Nanoscale Res. Lett., 7, No. 1, 1–7 (2012).

    Article  Google Scholar 

  15. B. W. Mwakikunga, A. Forbes, E. Sideras-Haddad, and C. Arendse, “Optimization, yield studies and morphology of WO3 nano-wires synthesized by laser pyrolysis in C2H2 and O2 ambients—validation of a new growth mechanism,” Nanoscale Res. Lett., 3, No. 10, 372–380 (2008).

    Article  Google Scholar 

  16. S. M. Cui, G. H. Lu, S. Mao, et al., “One-dimensional tungsten oxide growth through a grain-by-grain buildup process,” Chem. Phys. Lett., 485, No. 1–3, 64–68 (2010).

    Article  Google Scholar 

  17. B. M. Smirnov, “Fractal clusters,” Usp. Fiz. Nauk, 149, No. 2, 177–219 (1986).

    Article  Google Scholar 

  18. A. N. Zelikman and B. G. Korshunov, Metallurgy of Rare Metals [in Russian], Metallurgiya, Moscow (1991), p. 432.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Shkoropado.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 55, Nos. 11–12 (512), pp. 129–136, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkoropado, M.S., Orlovskaya, S.G. & Shevchenko, Y.A. Studying the Kinetics and Mechanism of Crystal Growth on Tungsten Wires in Normal Conditions. Powder Metall Met Ceram 55, 739–744 (2017). https://doi.org/10.1007/s11106-017-9862-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-017-9862-z

Keywords

Navigation