Skip to main content

Secondary Ion Emission of High-Entropy Cr14.3Mn14.3Fe14.3Ni28.6Co14.3Cu14.3 Alloy

To understand the unique mechanical properties of high-entropy alloys, it is important to know the nature and strength of interatomic interactions between similar and dissimilar atoms. In this regard, the objective of this study is to use the phenomenon of secondary ion emission for Cr14.3Mn14.3Fe14.3Ni28.6Co14.3Cu14.3 alloy with fcc structure. The yield of secondary ions for all alloy components and corresponding pure metals is quantitatively compared for the first time and an equation is proposed to calculate the atomic bond energy based on the existing models of secondary ion emission mechanism. Compared to pure metals, the bond energy increases in the alloy for Cr and Fe atoms. The greatest decrease in the bond energy is observed for Mn atoms. Reduction in the bond energy for Co and Ni is insignificant. It is suggested that the atomic interaction energy is influenced by changes in the local electron density in fusion as compared with pure metals.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    V. I. Veksler, Secondary Ion Emission of Metals [in Russian], Nauka, Moscow (1978), p. 240.

    Google Scholar 

  2. 2.

    R. J.-B. Castaing, G. Slodzian, et al., “On possibilities of local analysis using secondary ion emission,” Acad. Sci. B, 251, 1010–1012 (1960).

    Google Scholar 

  3. 3.

    Ya. M. Fogel’, “Secondary ion emission,” Usp. Fiz. Nauk, No. 1, 75–112 (1967).

  4. 4.

    V. T. Cherepin and M. A. Vasil’ev, Secondary Ion Emission of Metals and Alloys [in Russian], Naukova Dumka, Kyiv (1975), p. 239.

    Google Scholar 

  5. 5.

    V. T. Cherepin and M. A. Vasil’ev, Methods and Tools for Surface Analysis of Materials [in Russian], Naukova Dumka, Kyiv (1982), p. 400.

    Google Scholar 

  6. 6.

    V. T. Cherepin, Ion Microprobe Analysis [in Russian], Naukova Dumka, Kyiv (1981), p. 434.

    Google Scholar 

  7. 7.

    J. Guepin, Contribution of Secondary Ion Emission: Theses [in French], Centre D’Orsay, Paris (1963), p. 65.

    Google Scholar 

  8. 8.

    H. E. Beske, “Positive yield of secondary ions of 21 elements,” Z. Naturforschung, 4, 30–35 (1964).

    Google Scholar 

  9. 9.

    G. Blaise and M. C. Cadeville, “Electronic structure of f.c.c. NiFe alloys, investigated by means of secondary ion emission,” J. Phys., 36, No. 6, 545–550 (1975).

    Article  Google Scholar 

  10. 10.

    F. Honda and J. W. Rabalais, “Quantitative surface analysis of copper–nickel alloys by secondary ion mass spectrometry,” Anal. Chem., 52, 2213–2214 (1980).

    Article  Google Scholar 

  11. 11.

    J.-F. Hennequin, R.-L. Inglebert, and P. V. de Lesegno, “Secondary ion and auger electron emission from Ar ion sputtered Fe–Al alloys,” Surf. Sci., 140, 197–201 (1984).

    Article  Google Scholar 

  12. 12.

    M. Abon and J. C. Bertolini, “Secondary ion emission of Rt–Ni single crystal alloys,” Appl. Surf. Sci., 32, 343–351 (1988).

    Article  Google Scholar 

  13. 13.

    J. W. Yeh, Y. L. Chen, S. J. Lin, and S. K. Chen, “High-entropy alloys––a new era of exploitation,” Mater. Sci. Forum, 560, 1–9 (2007).

    Article  Google Scholar 

  14. 14.

    Y. Zhang and Y. J. Zhou, “Solid solution formation criteria for high entropy alloys,” Mater. Sci. Forum, 561–565, 1337–1339 (2007).

    Article  Google Scholar 

  15. 15.

    S. A. Firstov, V. F. Gorban’, N. A. Krapivka, and É. P. Pechkovskii, “Strengthening and mechanical properties of cast high-entropy alloys,” Kompos. Nanomater., No. 2, 5–20 (2011).

  16. 16.

    S. A. Firstov, V. F. Gorban’, N. A. Krapivka, et al., “Effect of electron density on phase composition of high-entropy equiatomic alloys,” Powder Metall. Met. Ceram., 54, No. 9–10, 607–613 (2016).

    Article  Google Scholar 

  17. 17.

    C. Kittel, Introduction to Solid State Physics, 6th ed., Jonn Wiley, New York (1986), p. 646.

    Google Scholar 

  18. 18.

    U. Bardi, F. Niccolaic, M. Tostic, and A. Tolstogouzov, “Gold assay with knudsen effusion mass spectrometry,” Int. J. Mass Spectrom., 273, 138–144 (2008).

    Article  Google Scholar 

  19. 19.

    P. Sigmund, “Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets,” Phys. Rev., 184, 383–416 (1969).

    Article  Google Scholar 

  20. 20.

    J. M. Schroeer, T. N. Rhodin, and R. C. Bradley, “A quantum-mechanical model for the ionization of atoms during sputtering,” Surf. Sci., 34, 571–580 (1973).

    Article  Google Scholar 

  21. 21.

    W. H. Gries, “Quantum ion implantation: theoretical aspects,” Int. J. Mass Spectrom. Ion Phys., 17, 97–112 (1975).

    Article  Google Scholar 

  22. 22.

    M. V. Kuvakin, E. S. Kharlamochkin, and V. I. Bachurin, “Change in interatomic potential of interaction in gadolinium in magnetic phase transition,” Poverkhnost, No. 1, 89–92 (1982).

  23. 23.

    Yu. A. Bandurin, V. I. Bachurin, V. G. Drobnich, et al., “Ion-photon emission of cobalt in polymorphic transformation,” Pis’ma Zh. Tekh. Fiz., No. 12, 760–763 (1982).

  24. 24.

    V. V. Nemoshkalenko and V. G. Aleshin, Electron Spectroscopy of Crystals [in Russian], Naukova Dumka, Kyiv (1976), p. 179.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. A. Firstov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Firstov, S.A., Krapivka, N.A., Vasiliev, M.A. et al. Secondary Ion Emission of High-Entropy Cr14.3Mn14.3Fe14.3Ni28.6Co14.3Cu14.3 Alloy. Powder Metall Met Ceram 55, 458–463 (2016).

Download citation


  • high-entropy alloy
  • secondary ion emission
  • atomic structure
  • interatomic interaction
  • bond energy