Powder Metallurgy and Metal Ceramics

, Volume 55, Issue 7–8, pp 458–463 | Cite as

Secondary Ion Emission of High-Entropy Cr14.3Mn14.3Fe14.3Ni28.6Co14.3Cu14.3 Alloy

  • S. A. Firstov
  • N. A. Krapivka
  • M. A. Vasiliev
  • S. I. Sidorenko
  • S. M. Voloshko
PROTECTIVE AND FUNCTIONAL POWDER COATINGS

To understand the unique mechanical properties of high-entropy alloys, it is important to know the nature and strength of interatomic interactions between similar and dissimilar atoms. In this regard, the objective of this study is to use the phenomenon of secondary ion emission for Cr14.3Mn14.3Fe14.3Ni28.6Co14.3Cu14.3 alloy with fcc structure. The yield of secondary ions for all alloy components and corresponding pure metals is quantitatively compared for the first time and an equation is proposed to calculate the atomic bond energy based on the existing models of secondary ion emission mechanism. Compared to pure metals, the bond energy increases in the alloy for Cr and Fe atoms. The greatest decrease in the bond energy is observed for Mn atoms. Reduction in the bond energy for Co and Ni is insignificant. It is suggested that the atomic interaction energy is influenced by changes in the local electron density in fusion as compared with pure metals.

Keywords

high-entropy alloy secondary ion emission atomic structure interatomic interaction bond energy 

References

  1. 1.
    V. I. Veksler, Secondary Ion Emission of Metals [in Russian], Nauka, Moscow (1978), p. 240.Google Scholar
  2. 2.
    R. J.-B. Castaing, G. Slodzian, et al., “On possibilities of local analysis using secondary ion emission,” Acad. Sci. B, 251, 1010–1012 (1960).Google Scholar
  3. 3.
    Ya. M. Fogel’, “Secondary ion emission,” Usp. Fiz. Nauk, No. 1, 75–112 (1967).Google Scholar
  4. 4.
    V. T. Cherepin and M. A. Vasil’ev, Secondary Ion Emission of Metals and Alloys [in Russian], Naukova Dumka, Kyiv (1975), p. 239.Google Scholar
  5. 5.
    V. T. Cherepin and M. A. Vasil’ev, Methods and Tools for Surface Analysis of Materials [in Russian], Naukova Dumka, Kyiv (1982), p. 400.Google Scholar
  6. 6.
    V. T. Cherepin, Ion Microprobe Analysis [in Russian], Naukova Dumka, Kyiv (1981), p. 434.Google Scholar
  7. 7.
    J. Guepin, Contribution of Secondary Ion Emission: Theses [in French], Centre D’Orsay, Paris (1963), p. 65.Google Scholar
  8. 8.
    H. E. Beske, “Positive yield of secondary ions of 21 elements,” Z. Naturforschung, 4, 30–35 (1964).Google Scholar
  9. 9.
    G. Blaise and M. C. Cadeville, “Electronic structure of f.c.c. NiFe alloys, investigated by means of secondary ion emission,” J. Phys., 36, No. 6, 545–550 (1975).CrossRefGoogle Scholar
  10. 10.
    F. Honda and J. W. Rabalais, “Quantitative surface analysis of copper–nickel alloys by secondary ion mass spectrometry,” Anal. Chem., 52, 2213–2214 (1980).CrossRefGoogle Scholar
  11. 11.
    J.-F. Hennequin, R.-L. Inglebert, and P. V. de Lesegno, “Secondary ion and auger electron emission from Ar ion sputtered Fe–Al alloys,” Surf. Sci., 140, 197–201 (1984).CrossRefGoogle Scholar
  12. 12.
    M. Abon and J. C. Bertolini, “Secondary ion emission of Rt–Ni single crystal alloys,” Appl. Surf. Sci., 32, 343–351 (1988).CrossRefGoogle Scholar
  13. 13.
    J. W. Yeh, Y. L. Chen, S. J. Lin, and S. K. Chen, “High-entropy alloys––a new era of exploitation,” Mater. Sci. Forum, 560, 1–9 (2007).CrossRefGoogle Scholar
  14. 14.
    Y. Zhang and Y. J. Zhou, “Solid solution formation criteria for high entropy alloys,” Mater. Sci. Forum, 561–565, 1337–1339 (2007).CrossRefGoogle Scholar
  15. 15.
    S. A. Firstov, V. F. Gorban’, N. A. Krapivka, and É. P. Pechkovskii, “Strengthening and mechanical properties of cast high-entropy alloys,” Kompos. Nanomater., No. 2, 5–20 (2011).Google Scholar
  16. 16.
    S. A. Firstov, V. F. Gorban’, N. A. Krapivka, et al., “Effect of electron density on phase composition of high-entropy equiatomic alloys,” Powder Metall. Met. Ceram., 54, No. 9–10, 607–613 (2016).CrossRefGoogle Scholar
  17. 17.
    C. Kittel, Introduction to Solid State Physics, 6th ed., Jonn Wiley, New York (1986), p. 646.Google Scholar
  18. 18.
    U. Bardi, F. Niccolaic, M. Tostic, and A. Tolstogouzov, “Gold assay with knudsen effusion mass spectrometry,” Int. J. Mass Spectrom., 273, 138–144 (2008).CrossRefGoogle Scholar
  19. 19.
    P. Sigmund, “Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets,” Phys. Rev., 184, 383–416 (1969).CrossRefGoogle Scholar
  20. 20.
    J. M. Schroeer, T. N. Rhodin, and R. C. Bradley, “A quantum-mechanical model for the ionization of atoms during sputtering,” Surf. Sci., 34, 571–580 (1973).CrossRefGoogle Scholar
  21. 21.
    W. H. Gries, “Quantum ion implantation: theoretical aspects,” Int. J. Mass Spectrom. Ion Phys., 17, 97–112 (1975).CrossRefGoogle Scholar
  22. 22.
    M. V. Kuvakin, E. S. Kharlamochkin, and V. I. Bachurin, “Change in interatomic potential of interaction in gadolinium in magnetic phase transition,” Poverkhnost, No. 1, 89–92 (1982).Google Scholar
  23. 23.
    Yu. A. Bandurin, V. I. Bachurin, V. G. Drobnich, et al., “Ion-photon emission of cobalt in polymorphic transformation,” Pis’ma Zh. Tekh. Fiz., No. 12, 760–763 (1982).Google Scholar
  24. 24.
    V. V. Nemoshkalenko and V. G. Aleshin, Electron Spectroscopy of Crystals [in Russian], Naukova Dumka, Kyiv (1976), p. 179.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • S. A. Firstov
    • 1
  • N. A. Krapivka
    • 1
  • M. A. Vasiliev
    • 2
  • S. I. Sidorenko
    • 3
  • S. M. Voloshko
    • 3
  1. 1.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine
  2. 2.Kurdyumov Institute for Metal PhysicsNational Academy of Sciences of UkraineKievUkraine
  3. 3.National Technical University of Ukraine ‘Kiev Polytechnic Institute’KievUkraine

Personalised recommendations