Skip to main content
Log in

The Effect of Flake Microstructure on the Preparation and Properties of Cu–Graphite Sintered Nanocomposites

  • NANOSTRUCTURED MATERIALS
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

A novel powder metallurgy method, based on preparation of powder mixtures of copper with 0.5, 1, 1.5, 2, 2.5, 3, and 5 wt.% of nanographite particles ~50 nm in size, is used to produce Cu-nanographite electrical contact materials with flake microstructure. The dispersion of graphite nanoparticles in the Cu matrix is examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Morphology, particle size, and apparent density of flake powders are investigated. Microstructure, density, electrical conductivity, and hardness are studied for green and sintered samples. The composites reinforced with lower graphite nanoparticles content (0.5 wt.%) exhibit much lower agglomeration content, while the composites reinforced with higher graphite nanoparticles content (5 wt.%) showed higher agglomeration content. It is found out that the electrical conductivity of the sintered Cu-nanographite electrical contact materials decreased from 76.92 to 68.28 IACS by graphite nanoparticle addition. The maximal (~34) and minimal (~20) Brinell hardness is obtained for the monolithic Cu sample and 5 wt.% graphite nanoparticle reinforced Cu electrical contact materials, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ö. Güler and E. Evin, “The investigation of contact performance of oxide reinforced copper composite via mechanical alloying,” J. Mater. Process Technol., 209, No. 3, 1286–1290 (2009).

    Article  Google Scholar 

  2. Z. Mu, H. R. Geng, M. N. Li, et al., “Effects of Y2O3 on the property of copper based contact materials,” Composites: Part B, 52, 51–55 (2013).

    Article  Google Scholar 

  3. S. S. Feng, H. R. Geng, and Z. Q. Guo, “Compaction study on Cu-based electrical contact materials by warm,” J. Funct. Mater., 42, 106–109 (2011).

    Google Scholar 

  4. W. Z. Shao, Y. S. Cui, and D. Z. Yang, “The development and current status of electrical contact materials,” Electr. Eng. Mater., 1,11–35 (1999).

    Google Scholar 

  5. T. Futami, M. Ohira, H. Muto, and M. Sakai, “Indentation contact behavior of copper–graphite particulate composites: correlation between the contact parameters and the electrical resistivity,” Carbon, 46, No. 4, 671–678 (2008).

    Article  Google Scholar 

  6. D. Zhang and Z. Zhan, “Strengthening effect of graphene derivatives in copper matrix composites,” J. All. Compd., 654, 226–233 (2016).

    Article  Google Scholar 

  7. J. Wang, R. Zhang, J. Xu, et al., “Effect of the content of ball-milled expanded graphite on the bending and tribological properties of copper–graphite composites,” Mater. Des., 47, 667–671 (2013).

    Article  Google Scholar 

  8. P. Queipo, M. Granda, R. Santamaria, and R. Menendez, “Preparation of pitch-based carbon–copper composites for electrical applications,” Fuel, 83, Nos. 11–12, 1625–163 (2004).

    Article  Google Scholar 

  9. G. S. Upadhayaya, Powder Metallurgy Technology, Cambridge International Science Publishing, England (2002), p. 159.

    Google Scholar 

  10. K. Rajkumar and S. Aravindan, “Tribological behavior of microwave processed copper-nanographite composites,” Tribol. Int., 57, 282–296 (2013).

    Article  Google Scholar 

  11. M. Bravunovic, V. V. Konchits, and N. K. Myshkin, Electrical Contacts: Fundamentals, Applications and Technology, CRC Press, New York (2006), p. 646.

    Book  Google Scholar 

  12. A. Azimi, A. Shokuhfar, and O. Nejadseyfi, “Mechanically alloyed Al7075–TiC nanocomposite: Powder processing, consolidation and mechanical strength,” Mater. Des., 66, Part A, 137–141 (2015).

  13. M. Taskin, U. Caligulu, and A. K. Gur, “Modeling adhesive wear resistance of Al–Si–Mg/SiCp PM compacts fabricated by hot pressing process, by means of ANN,” Int. J. Adv. Manuf. Technol., 37, No. 7, 715–721 (2008).

    Article  Google Scholar 

  14. M. Kök, “Computational investigation of testing parameter effects on abrasive wear behaviour of Al2O3 particle-reinforced MMCS using statistical analysis,” Int. J. Adv. Manuf. Technol., 52, No. 1, 207–215 (2011).

    Article  Google Scholar 

  15. M. A. Milton, V. U. Alejandro, P. Rodrigo, and M. Edgar, “In situ production of tantalum carbide nanodispersoids in a copper matrix by reactive milling and hot extrusion,” J. All. Compd., 598, 126–132 (2014).

    Article  Google Scholar 

  16. K. Dash, B. C. Ray, and D. Chaira, “Synthesis and characterization of copper–alumina metal matrix composite by conventional and spark plasma sintering,” J. All. Compd., 516, 78–84 (2012).

    Article  Google Scholar 

  17. I. Celikyurek, N. O. Korpe, T. Olcer, and R. Gurler, “Microstructure, properties and wear behaviors of (Ni3Al)p reinforced Cu matrix composites,” J. Mater. Sci. Technol., 27, No. 10, 937–943 (2011).

    Article  Google Scholar 

  18. L. Jiang, Z. Li, G. Fan, L. Cao, “The use of flake powder metallurgy to produce carbon nanotube (CNT)/ aluminum composites with a homogenous CNT distribution,” Carbon, 50, No. 5, 1993–1998 (2012).

    Article  Google Scholar 

  19. W. Zhang, Z. Li, L. Jiang, et al., “Flake thickness effect of Al2O3/Al biomimetic nanolaminated composites fabricated by flake powder metallurgy,” Mater. Sci. Eng. A, 594, 324–329 (2014).

    Article  Google Scholar 

  20. X. Kai, Z. Li, G. Fan, et al., “Strong and ductile particulate reinforced ultrafine-grained metallic composites fabricated by flake powder metallurgy,” Scr. Mater., 68, No. 8, 555–558 (2013).

    Article  Google Scholar 

  21. X. Z. Kai, Z. Q. Li, G. L. Fan, et al., “Enhanced strength and ductility in particulate-reinforced aluminum matrix composites fabricated by flake powder metallurgy,” Mater. Sci. Eng. A., 587, 46–53 (2013).

    Article  Google Scholar 

  22. H. H. Zhu, J. Y. H. Fuh, and L. Lu, “The influence of powder apparent density on the density in direct laser-sintered metallic parts,” Int. J. Mach. Tools Manuf., 47, No. 2, 294–298 (2007).

    Article  Google Scholar 

  23. R. M. German, Particle Packing Characteristics, Metal Powder Industries Federation, New Jersey (1989), p. 443.

    Google Scholar 

  24. K. Rajkumar and S. Aravindan, “Microwave sintering of copper–graphite composites,” J. Mater. Process Technol., 209, No. 15–16, 5601–5605 (2009).

    Article  Google Scholar 

  25. S. M. Uddin, T. Mahmud, C. Wolf, et al., “Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites,” Compos. Sci. Technol., 70, No. 16, 2253–2257 (2010).

    Article  Google Scholar 

  26. O. Hjortstam, P. Isberg, S. Söderholm, and H. Dai, “Can we achieve ultra-low resistivity in carbon nanotube-based metal composites,” Appl. Phys A., 78, No. 8, 1175–1179 (2004).

    Article  Google Scholar 

  27. M. Yusoff, R. Othman, and Z. Hussain, “Mechanical alloying and sintering of nanostructured tungsten carbide-reinforced copper composite and its characterization,” Mater. Des., 32, No. 6, 3293–3298 (2011).

    Article  Google Scholar 

  28. S. Mahdavi and F. Akhlaghi, “Effect of the graphite content on the tribological behavior of Al/Gr and Al/30SiC/Gr composites processed by in situ powder metallurgy (IPM) method,” Tribol. Lett., 44, No. 1, 1–12 (2011).

    Article  Google Scholar 

Download references

Acknowledgments

This study has been supported by the Scientific and Technological Research Council of Turkey (TUBITAK) with the project number 114M070. The authors would like to express their sincere thanks and appreciations to The Scientific and Technological Research Council of Turkey (TUBITAK) for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Canakci.

Additional information

Published in Poroshkovaya Metallurgiya, Vol. 55, Nos. 7–8 (510), pp. 60–72, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varol, T., Canakci, A. The Effect of Flake Microstructure on the Preparation and Properties of Cu–Graphite Sintered Nanocomposites. Powder Metall Met Ceram 55, 426–436 (2016). https://doi.org/10.1007/s11106-016-9823-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-016-9823-y

Keywords

Navigation