Skip to main content
Log in

Thermodynamic Properties of Ce–Ni Binary Alloys

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The mixing enthalpies of liquid Ce–Ni binary alloys (0 < xNi < 0.45 at 1430 K and 0.78 < xNi < 1 at 1820 K) are determined by isoperibol calorimetry. The thermodynamic properties of the liquid Ce–Ni binary alloys are calculated for the entire composition range using the model of ideal associated solutions. The thermodynamic activities of components show negative deviations from the ideal behavior. The mixing enthalpies are characterized by significant exothermic effects. The minimum mixing enthalpy of the melts is –34.8 ± 0.9 kJ/mol at xNi = 0.66 and 1820 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. I. Ivanov, V. V. Berezutskii, M. O. Shevchenko, et al., “Interaction in europium-containing alloy systems,” Dop. NAN Ukrainy, No. 8, 90–99 (2013).

  2. W. Xiong, Y. Du, X. Lu, et al., “Reassessment of the Ce–Ni binary system supported by key experiments and ab initio calculations,” Intermetallics, 15, 1401–1408 (2007).

    Article  Google Scholar 

  3. H. Okamoto, “Ce–Ni (cerium–nickel),” J. Phase Equilib. Diff., 30, No 4, 407 (2009).

    Article  Google Scholar 

  4. V. S. Sudavtsov, Yu. G. Gorobets, and G. I. Batalin, “Enthalpies of forming liquid binary alloys in the Ce–(Si, Ni, Cu) systems,” Rasplavy, 2, No. 6, 79–81 (1988).

    Google Scholar 

  5. I. V. Nikolaenko and O. V. Vlasova, “Enthalpies of mixing nickel with cerium and cerium valence in melt,” Rasplavy, No. 4, 79–83 (1992).

  6. M. Palumbo, G. Borzone, S. Delsante, et al., “Thermodynamic analysis and assessment of the Ce–Ni system,” Intermetallics, 12, 1367–1372 (2004).

    Article  Google Scholar 

  7. Z. Du, L. Yang, and G. Ling, “Thermodynamic assessment of the Ce–Ni system,” J. Alloys Compd., 375, 186–190 (2004).

    Article  Google Scholar 

  8. K. Yamaguchi, D.-Y. Kim, M. Ohtsuka, and K. Itagaki, “Heat content and heat of formation measurements of RNix alloys (R = La, Ce, Pr or Nd) and heat balance in a reduction–diffusion process,” J. Alloys Compd., 221, 161–168 (1995).

    Article  Google Scholar 

  9. C. Colinet and A. Pasturel, “A thermodynamic study of cerium behavior in hexagonal CeNi5 compound,” Phys. Stat. Sol. A, 80, K75 (1983).

    Article  Google Scholar 

  10. F. Meyer-Liautaud, A. Pasturel, C. H. Allibert, and C. Colinet, “Thermodynamic study of the valence state of cerium and hydrogen storage in Ce(Ni1–x Cu x )5 compounds,” J. Less-Common Met., 110, 119–126 (1985).

    Article  Google Scholar 

  11. B. P. Reddy, R. Babu, K. Nagarajan, and P. R. V. Rao, “Enthalpies of formation of CeNi2 and CeNi5 by calorimetry,” J. Nuclear Mater., 247, 235–239 (1997).

    Article  Google Scholar 

  12. Q. Guo and O. J. Kleppa, “Standard enthalpies of formation of CeNi5 and of RENi (RE = Ce, Pr, Nd, Sm, Gd, Tb, Ho, Tm and Lu), determined by high-temperature direct synthesis calorimetry,” J. Alloys Compd., 270, 212–217 (1998).

    Article  Google Scholar 

  13. Q. Guo and O. J. Kleppa, “The standard enthalpies of formation of the compounds of early transition metals with late transition metals and with noble metals as determined by Kleppa and co-workers at the University of Chicago: A review,” J. Alloys Compd., 321, 169–182 (2001).

    Article  Google Scholar 

  14. J. Wang, J. L. Jorda, A. Pisch, and R. Flükiger, “Experimental study of the CeNi5–CeCu5 system,” Intermetallics, 14, 695–701 (2006).

    Article  Google Scholar 

  15. A. Pisch, J. Wang, and J.-L. Jorda, “Thermodynamic modelling of the Ce–Ni system,” Int. J. Mater. Res., 97, No 6, 737–743 (2006).

    Google Scholar 

  16. M. Ivanov, V. Berezutski, and N. Usenko, “Mixing enthalpies in liquid alloys of manganese with the lanthanides,” J. Mater. Res., 102, 277 (2011).

    Google Scholar 

  17. David R. Lide, Handbook of Chemistry and Physics, 84th ed., CRC Press Taylor and Francis, Boca Raton, USA (2003).

    Google Scholar 

  18. A. T. Dinsdale, “SGTE data for pure elements,” Calphad, 15, No 4, 319–427 (1991).

    Article  Google Scholar 

  19. D.-Y. Kim, M. Ohtsuka, and K. Itagaki, “Study on reactive diffusion in Ni–RE (RE = Ce, Pr, Nd) binary alloys,” Shigen-to-Sozai, 110, No. 2, 95–101 (1994).

    Article  Google Scholar 

  20. R.Vogel, “On the cerium–nickel, lanthanum–nickel, praseodymium–nickel, and cerium–cobalt systems,” Z. Metallkd., 38, 97–103 (1947).

    Google Scholar 

  21. J. M. Gebhart, D. E. Etter, and P. A. Tucker, Proc. 6th R.E. Research Conference, Rare Earth Information Centre, Ames, Iowa (1967), pp. 452–457.

    Google Scholar 

  22. U. K. Duisemaliev, “Solubility in nickel and mechanical properties of nickel–cerium alloys,” Zh. Neorg. Khim., 9, 755–756 (1964).

    Google Scholar 

  23. R. H. Perkins, L. A. Geoffrian, and J. C. Biery, “Density of some low melting alloys,” Trans. AIME, 233, 1703–1710 (1965).

    Google Scholar 

  24. B. G. Qi, Z. Li, K. Itagaki, and A. Yazawa, “High temperature phase relations in Ni–RE (RE = La, Ce, Pr, Nd) binary and ternary alloy systems,” Mater. Trans. JIM, 30, No. 8, 583–593 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Sudavtsova.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 54, Nos. 9–10 (505), pp. 106–115, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, M.I., Berezutskii, V.V., Shevchenko, M.O. et al. Thermodynamic Properties of Ce–Ni Binary Alloys. Powder Metall Met Ceram 54, 590–598 (2016). https://doi.org/10.1007/s11106-016-9752-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-016-9752-9

Keywords

Navigation