Skip to main content

Advertisement

Log in

Structure and Properties of Ni3Al Intermetallic Under Vacuum Impact Sintering

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The compaction, structure, and mechanical properties of Ni3Al intermetallic, corresponding to PN85Yu15 commercial powder and mainly consisting of 50–100 μm particles, are studied. The preforms were subjected to impact sintering in 0.013 Pa vacuum at 1100, 1150, 1200, 1250, and 1300°C. Isothermal holding at these temperatures lasted for 20 min. The samples were compacted at an impact energy of 1200 J/cm3 and an initial impact velocity of 6.5 m/sec. The disk samples were used to cut out rectangular bars to determine their density, resistivity, bending, tensile, and compression strength, conditional fracture toughness, and fracture energy (for notched samples). The Vickers hardness and plasticity of the samples were evaluated in different types of tests. The mechanical properties of Ni3Al intermetallic powder samples compacted at 1250°C and higher temperatures are consistent with those of the standard conventionally melted intermetallic. In particular, the average bending strength is 650–675 MPa, tensile strength 385–400 MPa, fracture toughness 14.6–18.2 MPa · m1/2, compression strength 1650 MPa, and Vickers hardness 2500–2600 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. V. S. Panov, V. A. Shugaev, and M. A. Goldberg, “On potential application of Ni3Al as a binder for hardmetals,” Izv. Vuzov. Poroshk. Metall. Funk. Pokr., No. 4, 56–59 (2008).

  2. G. V. Talanova, A. G. Padalko, V. S. Panov, et al., “Effect of pressure heat treatment on the structure and properties of WC–Ni3Al alloy,” Neorg. Mater., 44, No. 3, 296–299 (2008).

    Article  Google Scholar 

  3. V. S. Panov and M. A. Goldberg, “Interaction of tungsten carbide with aluminum nickelide Ni3Al,” Powder Metall. Met. Ceram., 48, Nos. 7–8, 100–104 (2009).

  4. Li Xiaoqiang, Chen Jian, Zheng Donghai, et al., “Preparation and mechanical properties of WC–10 Ni3Al cemented carbides with plate-like triangular prismatic WC grains,” J. Alloys Compd., 544, 134–140 (2012).

  5. Jian-zhan Long, Zhong-jian Zhang, Tao Xu, et al., “WC–Ni3Al–B composites prepared through Ni + Al elemental powder route,” Trans. Nonferrous Met. Soc. China, 22, 847–852 (2012).

  6. Zhang Kai, Zhang Zhongjian, Lu Xingxu, et al., “Microstructure and composition of the grain/binder interface in WC–Ni3Al composites,” Int. J. Refract. Met. Hard Mater., 44, 88–93 (2014).

  7. E. Fras, A. Janas, A. Kolbus, and E. Olejnik, “Cast in situ composites of Ni3Al/MeC type,” Arch. Foundry Eng., 9, No. 2, 81–86 (2009).

    Google Scholar 

  8. T. N. Tiegs, J. L. Schroeder, F. C. Montgomery, and D. L. Barker, “Microstructure development during sintering of TiC–Ni3Al cermets,” Adv. Powder Metall. Part. Mater., 3, Part 11 (1999).

  9. I. V. Zorin, G. N. Sokolov, Yu. N. Dubtsov, et al., “Study of the structure and properties of deposited nickel aluminide Ni3Al doped with nanosized tungsten carbides,” Persp. Mater., No. 2, 21–27 (2012).

  10. A. F. Belov, “Grain metallurgy as a new method for improving structural materials,” Vest. Akad. Nauk SSSR, No. 5, 74–84 (1975).

  11. G. S. Garibov, “Grain metallurgy as a basis for developing promising aviation engines,” Tekhnol. Legk. Splav., No. 1, 66–78 (2007).

  12. A. M. Kazberovich, “Promising techniques of grain metallurgy of oxidation-resistant nickel alloys,” Tekhnol. Legk. Splav., No. 1, 79–83 (2007).

  13. G. H. Gessinger, Powder Metallurgy of Superalloys, Butterworths, London (1984).

  14. A. V. Laptev, A. I. Tolochin, V. V. Kovylyaev, et al., “Impact sintering of high-temperature creep-resistant stainless steel Kh17N2. I. Density and structure of the samples,” Metallofiz. Noveish. Tekhnol., 34, No. 2, 195–208 (2012).

    Google Scholar 

  15. A. V. Laptev, A. I. Tolochin, V. V. Kovylyaev, et al., “Impact sintering of high-temperature creep-resistant stainless steel Kh17N2. II. Mechanical properties and diffusion coefficients in isothermal holding and impact compaction,” Metallofiz. Noveish. Tekhnol., 34, No. 4, 521–540 (2012).

    Google Scholar 

  16. A. V. Laptev, L. A. Kryachko, A. I. Tolochin, et al., “Comparison of the structure and mechanical properties of ordinary and ultrafine Ag–30Ni composites produced by impact sintering,” Metallofiz. Noveish. Tekhnol., 34, No. 10, 1001–1018 (2012).

    Google Scholar 

  17. V. S. Sinel’nikova, V. A. Podergin, and V. N. Rechkin, Aluminides, Naukova Dumka, Kiev (1965), p. 244.

  18. E. M. Grale, “Research into NiAl and Ni3Al,” in: J. H. Westbrook (ed.), Mechanical Properties of Intermetallic Compounds, John Wiley & Sons, New York (1960).

  19. E. N. Kablov, O. G. Ospennikova, and O. A. Bazyleva, “Foundry structural alloys based on nickel aluminide,” Dvigatel’, No. 4, 70 (2010).

  20. G. K. Dey, “Physical metallurgy of nickel aluminides,” Sadhana, 28, Issue 1–2, 247–262 (2003).

  21. V. V. Skorokhod, “Theory of the physical properties of porous and composite materials and the principles for control of their microstructure in manufacturing processes,” Powder Metall. Met. Ceram., 34, No. 1–2, 48–63 (1995).

    Article  Google Scholar 

  22. A. V. Korznikov, Z. Pakiela, and K. J. Kurzydlowski, “Influence of long-range ordering on mechanical properties of nanocrystalline Ni3Al,” Scripta Mater., 45, 309–315 (2001).

    Article  Google Scholar 

  23. B. A. Grinberg and M. A. Ivanov, Intermetallics Ni 3 Al and TiAl: Microstructure and Deformation Behavior [in Russian], UrO RAN, Ekaterinburg (2002), p. 360.

  24. J. Malcharzikova and M. Kursa, “Mechanical characteristics of Ni3Al based alloys with stoichiometric and hypostoichiometric composition,” in: Proc. 19th Int. Metallurgical and Materials Conference METAL 2010, Rožnov, Czech Republic.

  25. M. Inoue, K. Suganuma, and K. Niihara, “Toughening mechanism of Ni3Al alloys by B-doping,” J. Mater. Sci. Lett., 17, 1967–1969 (1998).

    Article  Google Scholar 

  26. J. D. Rigney and J. J. Lewandowski, “Fracture toughness of monolithic nickel aluminide intermetallics,” Mater. Sci. Eng. A, 149, 143–151 (1992).

    Article  Google Scholar 

  27. S. M. Barinov and Yu. L. Krasulin, “Assessment of fracture toughness of refractory materials considering fracture kinetics,” Zavod. Lab., 51, No. 12, 55–61 (1985).

    Google Scholar 

  28. Methods for Mechanical Tests of Metals. Determination of Fracture Toughness under Static Loading. GOST 25.506–85 [in Russian], Izd. Standartov, Moscow (1985), p. 62.

  29. Yu. L. Krasulin, S. M. Barinov, and V. S. Ivanov, Structure and Fracture of Refractory Powder Materials [in Russian], Nauka, Moscow (1985), p. 152.

  30. J. T. Guo, L. Y. Sheng, Y. Xiea, et al. “Microstructure and mechanical properties of Ni3Al and Ni3Al–1B alloys fabricated by SHS/HE,” Intermetallics, 19, 137–142 (2011).

    Article  Google Scholar 

  31. S. K. Shee, S. K. Pradhan, and M. De, “Effect of alloying on the microstructure and mechanical properties of Ni3Al,” J. Alloys Compd., 265, 249–256 (1998).

    Article  Google Scholar 

  32. A. V. Laptev, A. I. Tolochin, D. G. Verbilo, and I. Yu. Okun’, “Structure and properties of Kh20N80 alloy powders produced by impact sintering at different temperatures,” Powder Metall. Met. Ceram., 54, Nos. 7–8, 416–427 (2015).

  33. Li-yuan Sheng, Ting-fei Xi, Chen Lai, et al., “Effect of extrusion process on microstructure and mechanical properties of Ni3Al−B−Cr alloy during self-propagation high-temperature synthesis,” Trans. Nonferrous Met. Soc. China, 22, 489−495 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Laptev.

Additional information

Translated from Poroshkovaya Metallurgiya, Nos. 9–10 (505), pp. 60–79, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laptev, A.V., Tolochin, A.I., Kovalchenko, M.S. et al. Structure and Properties of Ni3Al Intermetallic Under Vacuum Impact Sintering. Powder Metall Met Ceram 54, 554–567 (2016). https://doi.org/10.1007/s11106-016-9749-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-016-9749-4

Keywords

Navigation