Skip to main content
Log in

Low-Temperature Synthesis and Characterization of Spinel Ferrite Powders

  • THEORY, MANUFACTURING TECHNOLOGY, AND PROPERTIES OF POWDERS AND FIBERS
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Nanoparticles of NiAlxFe 2–x O 4 (x = 0; 0.1; 0.2; 0.3; 0.4, and 0.5) are synthesized by sol–gel method with auto-combustion. X-ray diffraction patterns confirm the single phase spinel structure of the samples produced. The scanning electron microscope images indicate that the particle size of the samples lies in a nanometer range. Synthesized in this manner, the powder has high crystallinity and good morphological homogeneity. It is observed that the grain size decreases from 46 to 18 nm as the nonmagnetic Al content increases. The lattice constant and radiodensity of ferrites depending on the content of the component x are determined. The structural and adsorption characteristics of the synthesized samples are determined by analyzing nitrogen sorption isotherms at 77 K. It is demonstrated that the samples produced are mesoporous because their pores are 2–5 nm in size. The thermal processes are investigated by thermal analysis and infrared spectroscopy. It is established that the nitrate-citrate gel burns automatically and then directly transforms into nanosized ferrite particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. V. Kopayev and V. S. Bushkova, “Application of the electron theory of sintering to the ferrite systems,” Acta Phys. Polon. A., 117, No. 1, 25–28 (2010).

    Google Scholar 

  2. C. Upadhyay, H. C. Verma, and S. Anand, “Cation distribution in nanosized Ni–Zn ferrites,” J. Appl. Phys., 95, No. 10, 5746–5751 (2004).

    Article  Google Scholar 

  3. K. O. Low and F. R. Sale, “Electromagnetic properties of gel-derived NiCuZn ferrites,” J. Magn. Magn. Mater., 246, 30–35 (2002).

    Article  Google Scholar 

  4. S. M. Yunus, H. S. Shim, C. H. Lee, et al., “Neutron diffraction studies of the diluted spinel ferrite ZnxMg0.75x Cu0.25Fe2O4,” J. Magn. Magn. Mater., 232, 121–132 (2001).

    Article  Google Scholar 

  5. M. Gateshki, V. Petkov, S. K. Pradhan, and T. Vogt, “Structure of nanocrystalline MgFe2O4 from X-ray diffraction, Rietveld and atomic pair distribution function analysis,” J. Appl. Cryst., 38, 772–779 (2005).

    Article  Google Scholar 

  6. X. Qi, J. Zhou, Z. Yue, et al., “Effect of Mn substitution on the magnetic properties of MgCuZn ferrites,” J. Magn. Magn. Mater., 251, 316–322 (2002).

    Article  Google Scholar 

  7. N. S. Bhattacharyya and G. P. Srivastava, “Synthesis and characterization of Mg–Ni ferrite prepared by solgel auto–combustion method,” J. Magn. Magn. Mater., 262, 212–217 (2003).

    Article  Google Scholar 

  8. S. Nasir, G. Asghar, M. A. Malik, and M. Anis-ur-Rehman, “Structural, dielectric and electrical properties of zinc doped nickel nanoferrites prepared by simplified the sol–gel method,” J. Sol–gel Sci. Technol., 59, 111–116 (2011).

    Article  Google Scholar 

  9. C. Venkataraju, G. Sathishkumar, and K. Sivakumar, “Effect of cation distribution on the structural and magnetic properties of nickel substituted nanosized Mn–Zn ferrites prepared by co-precipitation method,” J. Magn. Magn. Mater., 322, No. 2, 230–233 (2010).

    Article  Google Scholar 

  10. A. V. Kopayev, B. K. Ostafiichuk, I. P. Yaremiy, and I. Y. Vylka, “Structure and magnetic properties of Ni–Al ferrite nanopowders, synthesized by sol–gel auto-combustion method,” X-Ray, Synchr. Neutr. Study, 10, 79–83 (2007).

    Google Scholar 

  11. A. V. Kopayev, B. K. Ostafiychuk, I. Y. Vylka, and D. L. Zadnipryannyy, “Peculiarities of nickelaluminum ferrites with nanopowder structure,” Mat.-wiss. u. Werkstofftech., 40, No. 1, 255–257 (2009).

    Article  Google Scholar 

  12. M. Mozaffari and J. Amighian, “Preparation of Al-substituted Ni ferrite powders via mechanochemical processing,” J. Magn. Magn. Mater., 260, 244–249 (2003).

    Article  Google Scholar 

  13. V. S. Bushkova and A. V. Kopayev, “Research electrical properties of composites systems (1–x) NiAl0.5Fe1.5O4–x BaTiO3,” J. Enterp. Techn., 52, Nos. 4–5, 43–47 (2011).

  14. S. E. Shirsath, B. G. Toksha, R. H. Kadam, et al., “Doping effect of Mn2+ on the magnetic behavior in Ni– Zn ferrite nanoparticles prepared by sol–gel auto-combustion,” J. Phys. Chem. Sol., 71, No. 12, 1669–1675 (2010).

    Article  Google Scholar 

  15. M. Atif and M. Nadeem, “Sol–gel synthesis of nanocrystalline Zn1–x NixFe2O4 ceramics and its structural, magnetic, and dielectric properties,” J. Sol–gel Sci. Technol., 72, 602–614 (2014).

    Article  Google Scholar 

  16. S. Zahi, “Synthesis, Permeability and microstructure of the optimal nickel–zinc ferrites by sol–gel route,” J. Electromagn. Anal. Appl., 2, 56–62 (2010).

    Google Scholar 

  17. V. S. Bushkova, B. K. Ostafiichuk, and A. V. Kopayev, “Features of synthesis of complex oxide systems by means of SGA-method,” Phys. Chem. Sol. St., 15, No. 1, 182–185 (2014).

    Google Scholar 

  18. S. S. Suryawanshi, V. V. Deshpande, U. B. Deshmukh, et al., “XRD analysis and bulk magnetic properties of Al3+ substituted Cu–Cd ferrites,” Mat. Chem. Phys., 59, No. 3, 199–203 (1999).

    Article  Google Scholar 

  19. A. T. Raghavender, R. G. Kulkarni, and K. M. Jadhav, “Magnetic properties of nanocrystalline Al doped nickel ferrite synthesized by the sol–gel method,” Chinese J. Physics, 46, No. 3, 366–375 (2008).

    Google Scholar 

  20. J. Križan, J. Možina, I. Bajsic, and M. Mazaj, Synthesis and Fluorescent Properties of Chromium–Doped Aluminate Nanopowders,” Acta. Chim. Slov., 59, No. 1, 163–168 (2012).

    Google Scholar 

  21. Q. Geng, X. Zhao, X. Gao, et al., Low–temperature combustion synthesis of CuCr2O4 spinel powder for spectrally selective paints,” J. Sol–gel Sci. Technol., 61, 281–288 (2012).

    Article  Google Scholar 

  22. E. E. Sileo, R. Rotelo, and S. E. Jacobo, “Nickel–zinc ferrites prepared by the citrate precursor method,” Physica B, 320, 257–260 (2002).

    Article  Google Scholar 

  23. Z. Yue, W. Guo, J. Zhou, et al., “Synthesis of nanocrystalline NiCuZn ferrite powders by sol–gel autocombustion method,” J. Magn. Magn. Mater., 208, 55–60 (2000).

    Article  Google Scholar 

  24. W. N. Martens, J. T. Kloprogge, R. L. Frost, and L. Rintoul, “Single crystal Raman study of erythrite Co3(AsO4)2∙8H2O,” J. Raman Spectr., 35, No. 3, 208–216 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Bushkova.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 54, Nos. 9–10 (505), pp. 3–11, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bushkova, V.S., Ostafiychuk, B.K. Low-Temperature Synthesis and Characterization of Spinel Ferrite Powders. Powder Metall Met Ceram 54, 509–516 (2016). https://doi.org/10.1007/s11106-016-9743-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-016-9743-x

Keywords

Navigation