Skip to main content
Log in

Phase-Structural and Electrochemical Properties of La2MgNi9 Alloys

  • STRUCTURAL MATERIALS RESEARCH
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

An Erratum to this article was published on 01 September 2015

Multiphase La 2 MgNi 9 alloys are synthesized by induction melting. The crystalline structures of all phases in the alloys are determined with X-ray diffraction. The La 2 MgNi 9 electrodes with nickel as a binder and electrical conductor are prepared and their charge–discharge characteristics are studied. The influence of homogenizing annealing and mechanical grinding on the discharge capacity and cyclic stability of the metal hydride (MH) electrodes is shown. The best electrochemical parameters are observed for powdered as-cast alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Kleperis, G. Wójcik, A. Czerwinski, et al., “Electrochemical behavior of metal hydrides,” J. Solid State Electrochem., 5, 229–249 (2001).

    Article  Google Scholar 

  2. O. A. Petrii and É. E. Levin, “Hydrogen storage materials in electrochemical systems,” Ros. Khim. Zh., No. 6, 115–119 (2006).

  3. P. H. L. Notten and M. Latroche, “Secondary batteries—nickel systems, nickel–metal hydride: metal hydrides,” in: Encyclopedia of Electrochemical Power Sources, Elsevier, Amsterdam (2009), pp. 502–521.

  4. B. Liao, Y. Q. Lei, L. X. Chen, et al., “Effect of the La/Mg ratio on the structure and electrochemical properties of La x Mg3–x Ni9 (x = 1.6–2.2) hydrogen storage electrode alloys for nickel–metal hydride batteries,” J. Power Sources, 129, 358–367 (2004).

    Article  Google Scholar 

  5. Y. Liu, Y. Cao, L. Huang, et al., “Rare earth–Mg–Ni-based hydrogen storage alloys as negative electrode materials for Ni–MH batteries,” J. Alloys Compd., 509, No. 3, 675–686 (2011).

    Article  Google Scholar 

  6. J. Gao, X. L. Yan, Z. Y. Zhao, et al., “Effect of annealed treatment on microstructure and cyclic stability for La–Mg–Ni hydrogen storage alloys,” J. Power Sources, 209, 257–261 (2012).

    Article  Google Scholar 

  7. J. Zhang, B. Villeroy, B. Knosp, et al., “Structural and chemical analyses of the new ternary La5MgNi24 phase synthesized by spark plasma sintering and used as negative electrode material for Ni–MH batteries,” Int. J. Hydrogen Energy, 37, 5225–5233 (2012).

    Article  Google Scholar 

  8. W.-K. Hu, R. V. Denys, C. C. Nwakwuo, et al., “Annealing effect on phase composition and electrochemical properties of the Co-free La2MgNi9 anode for Ni–metal hydride batteries,” Electrochim. Acta., 96, 27–33 (2013).

    Article  Google Scholar 

  9. L. Zhang, S. Han, Y. Li, et al., “Formation mechanism, phase structure and electrochemical properties of the La–Mg–Ni-based multiphase alloys by powder sintering LaNi5 and LaMgNi4,” Int. J. Hydrogen Energy, 38, 10431–10437 (2013).

    Article  Google Scholar 

  10. M. Latroche, F. Cuevas, W.-K. Hu, et al., “Mechanistic and kinetic study of the electrochemical charge and discharge of La2MgNi9 by in situ powder neutron diffraction,” J. Phys. Chem. C, 118, 12162–12169 (2014).

    Article  Google Scholar 

  11. D. Zhang, J. Tang, and K. A. Gschneidner Jr., “A redetermination of the La–Ni phase diagram from LaNi to LaNi5 (50–83.3 at.% Ni),” J. Less-Common Met., 169, 45–53 (1991).

    Article  Google Scholar 

  12. H. Inui, T. Yamamoto, Z. Di, and M. Yamaguchi, “Microstructures and defect structures in intermetallic compounds in the La–Ni alloys system,” J. Alloys Compd., 293–295, 140–145 (1999).

    Article  Google Scholar 

  13. Z. Di, T. Yamamoto, H. Inui, and M. Yamaguchi, “Characterization of stacking faults on basal planes in intermetallic compounds La5Ni19 and La2Ni7,” Intermetallics, 8, 391–397 (2000).

    Article  Google Scholar 

  14. F. Cuevas, M. Latroche, M. Hirscher, and A. Percheron-Guégana, “Formation and structure of highly over-stoichiometric LaNi5+x (x ~ 1) alloys obtained by manifold non-equilibrium methods,” J. Alloys Compd., 323–324, 4–7 (2001).

    Article  Google Scholar 

  15. S. De Negri, M. Giovannini, and A. Saccone, “Phase relationships of the La–Ni–Mg system at 500°C from 66.7 to 100 at.% Ni,” J. Alloys Compd., 439, 109–113 (2007).

    Article  Google Scholar 

  16. A. Férey, F. Cuevas, M. Latroche, et al., “Elaboration and characterization of magnesium–substituted La5Ni19 hydride forming alloys as active materials for negative electrode in Ni–MH battery,” Electrochim. Acta, 54, 1710–1714 (2009).

    Article  Google Scholar 

  17. T. Ozaki, M. Kanemoto, T. Kakeya, et al., “Stacking structures and electrode performances of rare earth–Mg–Ni-based alloys for advanced nickel–metal hydride battery,” J. Alloys Compd., 446–447, 620–624 (2007).

    Article  Google Scholar 

  18. Y. F. Liu, H. G. Pan, M. X. Gao, et al., “Degradation mechanism of the La–Mg–Ni-based metal hydride electrode La0.7Mg0.3Ni3.4Mn0.1,” J. Electrochem. Soc., 152, A1089–A1095 (2005).

    Article  Google Scholar 

  19. Z. M. Wang, H. Y. Zhou, Z. F. Gu, et al., “Preparation of LaMgNi4 alloy and its electrode properties,” J. Alloys Compd., 377, L7–L9 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Zavalii.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 54, Nos. 3–4 (502), pp. 117–125, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verbovitskii, Y.V., Denis, R.V., Shtender, V.V. et al. Phase-Structural and Electrochemical Properties of La2MgNi9 Alloys. Powder Metall Met Ceram 54, 220–226 (2015). https://doi.org/10.1007/s11106-015-9703-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-015-9703-x

Keywords

Navigation