Skip to main content
Log in

Rheological models of pressure sintering of powders

  • Theory and Technology of Sintering, Thermal and Thermochemical Treatment
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Rheological models of deformable bodies are used to develop a dynamic approach to the problem of mechanical actions on porous bodies during pressure sintering. Solutions of dynamic systems describing the force acting on porous viscoelastic bodies, either strain-hardenable or not, are presented depending on the control parameters of the systems. These parameters are determined by the inertial properties and rigidity of the machine and the rheological properties of the deformable bodies. The intensity of densification during the pressure sintering of porous bodies mainly depends on the ratio of rigidity of the system to the viscous resistance of the body. The simulation and analysis of the pressure sintering of porous bodies using the obtained solutions enable prediction of their densification conditions and functional properties depending on the machine characteristics and the sizes and rheological properties of deformable bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Reiner, Phenomenological macrorheology, in: F. R. Eirich (ed.), Rheology. Theory and Applications, Vol. 1, Academic Press, New York (1956), pp. 9–62.

    Google Scholar 

  2. B. Jaoul, Etude de la plasticité et application de métaux, Dunod, Paris (1965).

  3. T. D. Shermergor, Theory of Elasticity of Microinhomogeneous Materials [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  4. K. L. Johnson: Contact Mechanics, Cambridge Univ. Press, Cambridge (1985).

    Book  Google Scholar 

  5. M. S. Kovalchenko, “Dynamics of mechanical actions on materials,” Powder Metall. Met. Ceram., 32, No. 7, 596–601 (1993); 32, No. 8, 662–668 (1993); 32, No. 9–10, 756–762 (1993); 32, No. 11–12, 869–875 (1993); 36, No. 3–4, 217–225 (1997); 37, No. 3–4, 196–203 (1998); 37, No. 5–6, 307–315 (1998); 38, No. 9–10, 505–510 (1999); 38, No. 11–12, 625–637 (1999).

  6. M. S. Kovalchenko, “Dynamics of uniaxial tension of a viscoelastic strain-hardening body in a system with one degree of freedom,” Problems of Strength, 30, No. 4, 364–373 (1998); 30, No. 5, 460–471 (1998); 32, No. 1, 27–40 (2000).

  7. H. L. Lamb, Hydrodynamics, Cambridge Univ. Press (1932).

  8. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers. Definitions, Theorems, and Formulas for Reference and Review, McGraw-Hill Book Company (1968).

  9. A. Angot, Complements des mathématiques. A l'usage des ingenieurs de l’electrotechnique et des telecommunications, Paris (1957).

  10. V. A. Ditkin and A. P. Prudnikov, Integral Transforms and Operational Calculus, Pergamon Press, New York (1965).

    Google Scholar 

  11. M. S. Kovalchenko, “Elasticity and viscosity of isotropic porous materials,” Powder Metall. Met. Ceram., 42, No. 1–2, 81–87 (2003).

    Article  CAS  Google Scholar 

  12. M. S. Kovalchenko, “Strain hardening of a powder body in pressing,” Powder Metall. Met. Ceram., 48, No. 3–4, 133–144 (2009).

    Article  CAS  Google Scholar 

  13. M. S. Kovalchenko and A. V. Laptev, “Dynamics of WC–Co hard alloy compaction with hot pulsed pressing,” Powder Metall. Met. Ceram., 43, No. 3–4, 117–126 (2004).

    Article  CAS  Google Scholar 

  14. M. S. Kovalchenko and L. F. Ochkas, “Densification dynamics of copper and iron powder billets in hot shock compaction: Simulation and analysis,” Powder Metall. Met. Ceram., 47, No. 5–6, 273–283 (2008).

    Article  CAS  Google Scholar 

  15. M. S. Kovalchenko, T. P. Hrebenok, and L. F. Ochkas, “Simulation of the compaction dynamics of Cu+Al2O3 powder mixture under impulse hot pressing,” Powder Metall. Met. Ceram., 49, No. 11–12, 637–646 (2010).

    Google Scholar 

  16. M. S. Kovalchenko, “Pressure sintering of powder materials,” Powder Metall. Met. Ceram., 50, No. 1–2, 18–33 (2011).

    Article  CAS  Google Scholar 

  17. J. Weertman, “Theory of steady-state creep based on dislocation climb,” J. Appl. Phys., 26, No. 10, 1213–1217 (1955).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Kovalchenko.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 52, No. 1–2 (489), pp. 11–28, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovalchenko, M.S. Rheological models of pressure sintering of powders. Powder Metall Met Ceram 52, 7–19 (2013). https://doi.org/10.1007/s11106-013-9490-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-013-9490-1

Keywords

Navigation