Skip to main content
Log in

Microstructural Design of Ceramics

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

A methodological approach to the design of ceramics with predetermined composition and microstructure is proposed. Its fundamental idea is to implement the accumulated knowledge into existing technologies or develop novel science-based technologies. The choice of a known microstructure and the design of a novel one is based on the knowledge accumulated so far on material structurization and properties as follows: knowledge systematization – analysis – generalization – establishment of regularities. The ideology of designing a novel material with predetermined microstructure consists in implementing the following sequence of stages: knowledge-based choice of microstructure and sintering conditions → manufacture of a pilot sample of the material (prototype) → study of the properties → optimization of the microstructure and properties → technology. An algorithm is proposed for designing a material with required microstructure, which can be achieved through coordinated structural transformations during sintering, whose evolution determines the formation of planned microstructural elements, their crystalline morphology, size, content, and distribution throughout the volume. An example is provided for designing the microstructure of silicon carbide material with a SiC–B4C eutectic binder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. I. N. Frantsevich and A. N. Pilyankevich, “On interrelation of geometric and energy structure of solids,” in: Effect of High Pressures on Substance [in Russian], Vol. 1, Kiev (1987), pp. 86–91.

  2. V. V. Skorokhod, “Principles of microstructural engineering in powder metallurgy,” in: Proc. 17th All-Union Conf. Powder Metallurgy (October 21–25, 1991), Inst. Probl. Materialoved. USSR, Kiev (1991).

    Google Scholar 

  3. Yu. D. Tret’yakov, “Principles of creating new solid-phase materials,” Izv. AN SSSR. Neorg. Mater., No. 5, 693–701 (1985).

  4. Yu. D. Tret’yakov, “Development of inorganic chemistry as a fundamental basis for developing new generations of functional materials,” Usp. Khim., 73, No. 9, 899–916 (2004).

    Article  Google Scholar 

  5. N. N. Kiseleva, V. A. Dudarev, and V. S. Zemskov, “Computer information resources of inorganic chemistry and materials science,” Usp. Khim., 79, No. 2, 162–188 (2010).

    Google Scholar 

  6. A. M. Glezer, “Principles of creating multifunctional structural materials of new generation,” Usp. Fiz. Nauk, 182, No. 5, 559–566 (2011).

    Article  Google Scholar 

  7. V. V. Skorokhod, “Hierarchic concept of structural levels and structural engineering of inorganic materials,” Powder Metall. Met. Ceram., 48, No. 7–8, 396–405 (2009).

    Article  CAS  Google Scholar 

  8. R. J. Brook, “Fabrication principles for the production of ceramics with superior mechanical properties,” Proc. Brit. Ceram. Soc., No. 32, 7–24 (1982).

  9. Marin P. Harmer, Helen M. Chan, and Gary F. Miller, “Unique opportunities for microstructural engineering with duplex and laminar composites,” J. Am. Ceram. Soc., 75, No. 7, 1715–1728 (1992).

    Article  CAS  Google Scholar 

  10. P. F. Becher, “Microstructural design of toughened ceramics,” J. Am. Ceram. Soc., 74, No. 2, 255–269 (1991).

    Article  CAS  Google Scholar 

  11. T. Watanabe, “Toughening of brittle materials by grain boundary design and control,” Mater. Sci. Forum, 126–128, 295–304 (1993).

    Article  Google Scholar 

  12. W. M. Kriven, “Martensitic toughening of ceramics,” Mater. Sci. Eng. A, 127, 249–255 (1990).

    Article  Google Scholar 

  13. A. N. Pilyankevich, G. S. Oleinik, and V. F. Britun, “Structural mechanisms of dispersion of the grain structure in ceramic materials,” Powder Metall. Met. Ceram., 29, No. 1, 30–37 (1990).

    Article  Google Scholar 

  14. G. S. Oleinik, “Formation of fine-grained states in ceramic materials,” in: Fracture Mechanics and Physics of Brittle Materials [in Russian], Inst. Probl. Materialoved. NAN Ukrainy, Kiev (1992), pp. 4–33.

    Google Scholar 

  15. G. S. Oleinik, N. V. Danilenko, and N. P. Bezhenar’, “Processes of forming intragranular boundaries in ceramic materials,” in: Nanostructured Materials (Collected Scientific Papers) [in Russian], Inst. Probl. Materialoved. NAN Ukrainy, Kiev (1998), pp. 93–125.

    Google Scholar 

  16. G. S. Oleinik, Structurization of Materials Based on Covalent Substances [in Russian], ScD Thesis, Inst. Probl. Materialoved. AN USSR, Kiev (1987), p. 311.

  17. G. S. Oleinik and N. V. Danilenko, Plastic Deformation in Ceramics [in Russian], Preprint No. 10, Inst. Probl. Materialoved. NAN Ukrainy, Kiev (1997).

  18. G. S. Oleinik and N. V. Danilenko, “Evolution of deformation substructure in diamond crystals and diamond-like phases (BN, SiC, AlN) in thermal treatment under pressure,” in: Electron Microscopy and Strength of Materials [in Russian], Inst. Probl. Materialoved. NAN Ukrainy, Kiev (1999), pp. 106–128.

    Google Scholar 

  19. G. S. Oleinik, N. V. Danilenko, and Yu. I. Lezhnenko, “Primary crystallization of ceramic materials,” in: Electron Microscopy and Strength of Materials [in Russian], Inst. Probl. Materialoved. NAN Ukrainy, Kiev (1995), pp. 4–38.

    Google Scholar 

  20. G. S. Oleinik, “Structural transformations in the creation of single-phase superhard materials based on dense carbon and boron nitride phases at high pressures and temperatures,” Sverkhtverd. Mater., No. 4, 3–30 (2011).

    Google Scholar 

  21. G. S. Oleinik, “Structural transformations in the creation of superhard materials based on starting powders of wurtzite boron nitride, Sverkhtverd. Mater., No. 1, 3–26 (2012).

  22. V. M. Volkogon and G. S. Oleinik, “Effect of preliminary treatment by rolling of BNw powders on the wurtzite–sphalerite transformation during sintering of hexanit-R,” Sverkhtverd. Mater., No. 1, 22–31 (2003).

    Google Scholar 

  23. G. S. Oleinik and N. V. Danilenko, “Abnormal growth of grains in ceramics.” in: Electron Microscopy and Strength of Materials [in Russian], Inst. Probl. Materialoved. NAN Ukrainy, Kiev (1996), pp. 89–119.

    Google Scholar 

  24. G. S. Oleinik, N. V. Danilenko, and O. N. Kaidash, “Microstructural types of in situ-reinforced ceramics,” Ceramics, Polish Ceram. Bull. 12, Vol. 50, Polish Academy of Science, Krakow (1996), pp. 117–134.

    Google Scholar 

  25. M. P. Shaskol’skaya, Crystallography [in Russian], Vysshaya Shkola, Moscow (1976), p. 390.

    Google Scholar 

  26. O. A. Kaibyshev and R. Z. Valiev, Grain Boundaries and Properties of Metals [in Russian], Metallurgiya, Moscow (1987), p. 212.

    Google Scholar 

  27. V. Yu. Novikov, Secondary Recrystallization [in Russian], Metallurgiya, Moscow (1990), p. 128.

    Google Scholar 

  28. M. H. Lewis, G. Leng-Ward, and S. Mason, “Microstructural design of high temperature ceramics,” Brit. Ceram. Proc., 1–13 (1987).

  29. “Microstructure of high temperature engineering ceramics,” in: Proc. Inst. Phys. Conf. New Mater. and Their Appl. (September 22–25, 1987), Bristol, Philadelphia (1988), pp. 41–51.

  30. J. Dusza, “Possibilities of reliability improvement in advanced structural ceramics,” Pokr. Prask. Met. VUPM, No. 1, 23–71 (1993).

  31. K. Berroth, “Hightemperaturtechnik—Keramische Werkstoffe, Integrationskonzepte, Anwendungen,” Keram. Zeit, 46, No. 1, 13–24 (1994).

    Google Scholar 

  32. “Trends in the development of materials for superhigh temperatures,” Curr. Adv. Mater. Proc., 4, No. 5, 1670–1671 (1991).

  33. E. Beier, “Keramickwerkstoffe fur Flugzeuge und Raumfahrzeuge,” Technica (Suisse), 41, No. 26, 27–30 (1992).

    Google Scholar 

  34. J. Raj, “Fundamental research in structural ceramics for service near 2000°C,” J. Am. Ceram. Soc., 76, No. 9, 2147–2174 (1993).

    Article  CAS  Google Scholar 

  35. A. N. Tolstun, V. M. Kiiko, V. N. Kurlov, et al., “Production, microstructure, and mechanical properties of some eutectic oxide fibers,” Deform. Razrush. Mater., No. 3, 12–20 (2007).

    Google Scholar 

  36. S. T. Mileiko, “High-temperature ceramic-matrix composites,” Deform. Razrush. Mater., No. 5, 21–29 (2011).

    Google Scholar 

  37. T. Noda, H. Araki, F. Abe, and M. Okada, “Microstructure and mechanical properties of CVI carbon fiber/SiC composites,” J. Nucl. Mater., 191–194, 539–543 (1992).

    Google Scholar 

  38. Y. Harada, T. Suzuki, K. Hirano, et al., “Creep behaviors of in situ single-crystal Al2O3/YAG and Al2O3/GaP eutectic composites,” J. Ceram. Soc. Japan, 112, No. 5, 294–298 (2004).

    Google Scholar 

  39. G. H. Campbell, B. J. Delgleish, and A. G. Evans, “Brittle-to-ductile transition in silicon carbide,” J. Am. Ceram. Soc., 72, No. 8, 1402–1408 (1989).

    Article  CAS  Google Scholar 

  40. A. N. Pilyankevich, A. V. Kurdyumov, G. S. Oleinik, and N. F. Ostrovskaya, “Structure of graphite crystallized in SiC–B eutectic alloys,” Izv. AN SSSR, Neorg. Mater., 14, No. 1, 82–84 (1978).

    CAS  Google Scholar 

  41. E. Laurent-Pinson, G. Nouet, and J. Vicens, “Grain boundary studies in 4H and 6H silicon carbide in as-sintered state after high temperature deformation,” in: Proc. 9th Eur. Congr. Electron Microsc. EUREM 88 (September 4–9, 1988), Vol. 2, Bristol, Philadelphia (1988), pp. 543–544.

  42. Mark E. Sixta, Xiao Feng Zhang, and Lutgard C. De Jonghe, “Flexural creep of an in situ-toughened silicon carbide,” J. Am. Ceram. Soc., 84, No. 9, 2022–2028 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Oleinik.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 51, No. 11–12 (488), pp. 117–138, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oleinik, G.S. Microstructural Design of Ceramics. Powder Metall Met Ceram 51, 709–723 (2013). https://doi.org/10.1007/s11106-013-9486-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-013-9486-x

Keywords

Navigation