Skip to main content
Log in

Microstructure Formation and Evolution in Composites during Liquid-Phase Sintering

  • Theory and Technology of Sintering, Thermal and Thermochemical Treatment
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The paper presents a brief literature review on microstructure development in composites during liquid-phase sintering. Two mechanisms of microstructure coarsening in liquid-phase sintered systems are considered: dissolution–reprecipitation and coalescence. The data are systematized in the context of the Lifshitz–Slyozov–Wagner theory and the theory of coalescence at the final stages of liquid-phase sintering. The effect of various physicochemical factors, such as temperature, volume fraction, and time on microstructure development is explained in terms of quasichemical kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Hereafter the content of components in a material is given in wt.%.

References

  1. G. H. S. Price, C. J. Smithells, and S. V. Williams, “Sintered alloys. Part I. Copper–nickel–tungsten alloys sintered with liquid phase present,” J. Inst. Metals., 62, 239−264 (1938).

    Google Scholar 

  2. M. Lifshitz and V. V. Slyozov, “Kinetics of diffusion decomposition of solid solutions,” Zh. Éksp. Teor. Fiz., 35, No. 2 (8), 479–492 (1958).

    Google Scholar 

  3. M. Lifshitz, “On the theory of coalescence of solid solutions,” Fiz. Tv. Tela, 1, No. 9, 1401–1410 (1959).

    Google Scholar 

  4. C. Wagner, “Theorie der Alterung von Niederschlagen durch Umlosen,” Zeitschrift fur Electrochemie, 6, No. 7/8, 581–591 (1961).

    Google Scholar 

  5. V. V. Slezov, “Formation of the universal distribution function in the dimension space for new-phase particles in the diffusive decomposition of the supersaturated solid solution,” J. Phys. Chem. Sol., 39, 367–374 (1978).

    Article  CAS  Google Scholar 

  6. S. A. Kukushkin, “Kinetics of phase transitions of the first kind at the asymptotic stage,” Zh. Éksp. Teor. Fiz., 113, No. 6, 2193–2208 (1998).

    CAS  Google Scholar 

  7. R. D. Vengrenovich, A. V. Moskalyuk, and S. V. Yarema, “Ostwald ripening under mixed diffusion conditions,” Fiz. Tv. Tela, 49, No. 1, 13–18 (2007).

    Google Scholar 

  8. V. N. Eremenko, Yu. V. Naidich, and I. A. Lavrinenko, Sintering in the Presence of Liquid Metal Phase [in Russian], Naukova Dumka, Kyiv (1968).

    Google Scholar 

  9. V. V. Skorokhod, Powder Materials Based on Refractory Metals and Compounds [in Russian], Tekhnika, Kyiv (1982).

    Google Scholar 

  10. V. A. Evensen, Phenomenology of Sintering and Some Issues of the Theory [in Russian], Metallurgiya, Moscow (1985).

    Google Scholar 

  11. R. M. German, Liquid Phase Sintering, Plenum Press, New York (1985).

    Google Scholar 

  12. V. V. Skorokhod, Yu. M. Solonin, and I. V. Uvarova, Chemical, Diffusion, and Rheological Processes in the Powder Materials Technology [in Russian], Naukova Dumka, Kyiv (1990).

    Google Scholar 

  13. V. V. Skorokhod, І. V. Uvarova, and A. V. Ragulya, Physicochemical Kinetics in Nanostructured Systems [in Ukrainian], Akademperiodika, Kyiv (2001).

    Google Scholar 

  14. J. H. Moon, “Status of powder metallurgy in Korea,” Int. J. Powder Metall., 33, No. 2, 15–18 (1997).

    CAS  Google Scholar 

  15. Lawley, “Editor’s note,” Int. J. Powder Metall., 25, No. 2, 77 (1989).

    Google Scholar 

  16. F. V. Lenel, “Sintering with liquid phase,” in: L. I. Walter and E. Kingston (eds.), The Physics of Powder Metallurgy. A Symposium Held at Bayside (August 24–26, 1949, New York), New York–Toronto–London (1951), pp. 238−255.

  17. C. B. Jordan and P. Duwez, “The densification of copper powder compacts in hydrogen and vacuum,” J. Metals, 1, 96−99 (1949).

    CAS  Google Scholar 

  18. C. S. Smith, “Grains, phases and interfaces: An interpretation of microstructure,” Trans. AIME, 175, 5−51 (1948).

    Google Scholar 

  19. J. Gurland and J. T. Norton, “Role of the binder phase in cemented Tungsten–Carbide–Cobalt alloys,” Trans. AIME, 194, 1051−1056 (1952).

    Google Scholar 

  20. N. M. Parikh and M. Humenik, Jr., “Cermets I: Fundamental concepts related to microstructure and physical properties of cermet systems,” J. Am. Ceram. Soc., 39, No. 2, 60−63 (1956).

    Article  Google Scholar 

  21. N. M. Parikh and M. Humenik, Jr., “Cermets II: Wettability and microstructure studies in liquid phase sintering,” J. Am. Ceram. Soc., 40, No. 9, 315−320 (1957).

    Article  CAS  Google Scholar 

  22. W. D. Kingery, “Densification during sintering in the presence of liquid phase. I. Theory,” J. Appl. Phys., 30, No. 3, 301−306 (1959).

    Article  CAS  Google Scholar 

  23. W. D. Kingery and N. D. Narasimhan, “Densification during sintering in the presence of liquid phase. II. Experimental,” J. Appl. Phys., 30, No. 3, 307−310 (1959).

    Article  CAS  Google Scholar 

  24. J. W. Martin and R. D. Doherty, Stability of Microstructure in Metallic Systems, Cambridge Univ. Press, London (1976).

    Google Scholar 

  25. G. W. Greenwood, “The growth of dispersed precipitates in solutions,” Acta Met., 4, 243–248 (1956).

    Article  CAS  Google Scholar 

  26. J. W. Christian, Theory of Transformations in Metals and Alloys, Pergamon Press, Oxford (1975).

    Google Scholar 

  27. L. P. Pitaevskii and E. M. Lifshitz, Physical Kinetics, Pergamon Press, Oxford (1981).

    Google Scholar 

  28. Ya. E. Geguzin, Macroscopic Defects in Metals [in Russian], Metallurgizdat, Moscow (1962).

    Google Scholar 

  29. H. Fischmeister and G. Grimvall, “Ostwald ripening – A survey,” in: G. C. Kuczynski (ed.), Materials Science Research: Sintering and Related Phenomena, Vol. 6, Plenum Press, New York–London (1973), pp. 119–149.

    Chapter  Google Scholar 

  30. R. A. Oriani, “Ostwald ripening of precipitates in solid matrices,” Acta Met., 12, No. 12, 1399–1409 (1964).

    Article  CAS  Google Scholar 

  31. J. Ardell and R. B. Nicholson, “On the modulated structure of aged Ni–Al alloys,” Acta Met., 14, No. 10, 1295–1309 (1966).

    Article  CAS  Google Scholar 

  32. Ya. Pines, “Solid phase sintering,” Zh. Tekhn. Fiz., 16, 739–741 (1946).

    Google Scholar 

  33. S. Sarian and W. Weart, “Kinetic of coarsening of spherical particles in a liquid matrix,” J. Appl. Phys., 37, No. 4, 1675–1681 (1966).

    Article  CAS  Google Scholar 

  34. R. Warren and M. B. Waldron, “Microstructural development during the liquid-phase sintering of cemented carbides,” Powder Metall., 15, No. 30, 167–201 (1972).

    Google Scholar 

  35. J. Ardell, “The effect of volume fraction on particle coarsening: Theoretical considerations,” Acta Met., 20, 61–71 (1972).

    Article  Google Scholar 

  36. R. Asimov, “Clustering kinetics in binary alloys,” Acta Met., 11, 72–73 (1963).

    Article  Google Scholar 

  37. K. Tsumuraya and Y. Miyata, “Coarsening models in incorporating both diffusion geometry and volume fraction of particles,” Acta Met., 31, No. 3, 72–73 (1983).

    Article  Google Scholar 

  38. O. I. Getman, V. N. Nizhenko, V. Ya. Petrishchev, and V. V. Skorokhod, “Microstructure of W–Ni–Sn composites in relation to amount of liquid phase on sintering,” Powder Metall. Met. Ceram., 44, No. 7/8, 347–352 (2005).

    Article  CAS  Google Scholar 

  39. R. M. German, “Microstructure of the gravitationally settled region in a liquid-phase sintered dilute tungsten heavy alloys,” Metal. Mat. Trans. A, 26A, 279–288 (1995).

    Article  CAS  Google Scholar 

  40. H. E. Exner, E. Santa Marta, and G. Petzow, “Grain growth in liquid-phase sintering of carbides,” in: H. H. Hausner, Modern Development in Powder Metallurgy, Vol. 4, Plenum Press, New York (1971), pp. 315–325.

    Google Scholar 

  41. K. W. Lay, “Grain growth in UO2–Al2O3 in the presence of a liquid phase,” J. Am. Ceram. Soc., 51, No. 7, 373–376 (1968).

    Article  CAS  Google Scholar 

  42. R. D. McKellar and C. B. Alcock, “Particle coarsening in fused salt media,” in: G. S. Kuczynski, Material Science Research: Sintering and Catalysis, Vol. 10, Plenum Press, New York (1975), pp. 409–418.

    Chapter  Google Scholar 

  43. R. Warren, “Liquid-phase sintering of NbC–Ni and NbC–Co,” J. Less-Com. Met., 17, 65–72 (1969).

    Article  CAS  Google Scholar 

  44. K. S. Chernyavskii, Stereology in Metal Science [in Russian], Metallurgiya, Moscow (1977).

    Google Scholar 

  45. R. Watanabe and Y. Masuda, “The growth of solid particles in Fe–20% Cu alloys during sintering in the presence of a liquid phase,” Trans. J. Inst. Met., 14, 320–326 (1973).

    CAS  Google Scholar 

  46. R. Watanabe and Y. Masuda, “The growth of solid particles in some two-phase alloys during sintering in the presence of a liquid phase,” in: G. C. Kuczynski (ed.), Material Science Research: Sintering and Catalysis, Vol. 10, Plenum Press, New York (1975), pp. 389–398.

    Chapter  Google Scholar 

  47. Y. Masuda and R. Watanabe, “Ostwald ripening process in the sintering of metal powders,” in: G. C. Kuczynski, Materials Science Research: Sintering Processes, Vol. 13, Plenum Press, New York (1980), pp. 3–21.

    Google Scholar 

  48. C. Greskovich and K. W. Lay, “Grain growth in very porous Al2O3 compacts,” J. Am. Ceram. Soc., 3, 142–146 (1972).

    Article  Google Scholar 

  49. N. Niemi and T. H. Courtney, “Microstructural development and evolution liquid-phase sintered Fe–Cu alloys,” J. Mater. Sci., 16, 226–236 (1981).

    Article  CAS  Google Scholar 

  50. O. J. Kwon and D. N. Yoon, “The liquid phase sintering of W–Ni,” in: G. C. Kuczynski, Materials Science Research: Sintering Processes, Vol. 13, Plenum Press, New York (1980), pp. 203–219.

    Google Scholar 

  51. C. Herring, “Effect of change of scale on sintering phenomena,” J. Appl. Phys., 21, 301–303 (1950).

    Article  CAS  Google Scholar 

  52. T. Ejima and M. Kameda, “Diffusion of iron and cobalt in liquid copper,” J. Jap. Met., 34, 96–103 (1970).

    Google Scholar 

  53. S. Tokajo, W. A. Kaysser, and G. Petzow, “Analysis of particle growth by coalescence during liquid phase sintering,” Acta Met., 32, No. 1, 107–113 (1984).

    Article  Google Scholar 

  54. W. A. Kaysser, S. Takajo, and G. Petzow, “Particle growth by coalescence during liquid phase sintering of Fe–Cu,” Acta Met., 32, No. 1, 115–122 (1984).

    Article  CAS  Google Scholar 

  55. G. H. Gessinger and H. F. Fischmeister, “A modified model for the sintering of tungsten with Nickel additions,” J. Less-Com. Met., 27, 129–141 (1972).

    Article  CAS  Google Scholar 

  56. G. H. Gessinger, H. F. Fischmeister, and H. L. Lukas, “A model for second-stage liquid-phase sintering with a partially wetting liquid,” Acta Met., 21, 715–724 (1973).

    Article  CAS  Google Scholar 

  57. F. B. Swinkers and M. E. Ashby, “Role of surface redistribution in sintering by grain boundary transport,” Powder Metall., 1, 1–7 (1980).

    Google Scholar 

  58. H. Riegger, J. A. Pask, and H. E. Exner, “Direct observation of densification and grain growth in W–Ni alloys,” in: G. C. Kuczynski, Materials Science Research: Sintering Processes, Vol. 13, Plenum Press, New York (1980), pp. 219–233.

    Google Scholar 

  59. W. J. Huppmann and G. Petzov, “Elementary mechanisms of liquid phase sintering,” in: G. C. Kuczynski, Materials Science Research: Sintering Processes, Vol. 13, Plenum Press, New York (1980), pp. 189–201.

    Google Scholar 

  60. W. J. Huppmann, H. Riegger, and G. Petzow, “Liquid phase sintering of the model system W–Ni,” Sci. Sintering, 10, 45–52 (1978).

    CAS  Google Scholar 

  61. D. L. Bourell and H. L. Marcus, “Selective laser sintering of metals and ceramics,” Int. J. Powder Metall., 28, No. 4, 369–382 (1992).

    CAS  Google Scholar 

  62. N. K. Tolochko, V. V. Mikhailov, S. E. Mozzharov, et al., “Kinetics of formation of interparticle contacts in the laser sintering of single component metallic powders,” Powder Metall. Met. Ceram., 36, No. 1–2, 50–55 (1997).

    Article  CAS  Google Scholar 

  63. R. M. German, “Supersolids liquid phase sintering. Part I: Process review; Part II: Densification theory,” Int. J. Metall., No. 1, 23–34, 35–42 (1990).

  64. R. M. German, “Densification of prealloyed tool steel powders: sintering model,” Int. J. Metall., 33, No. 6, 49–61 (1997).

    CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Academician Valery Skorokhod for the idea of and attention to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Lesnik.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 51, No. 11–12 (488), pp. 26–49, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lesnik, N.D. Microstructure Formation and Evolution in Composites during Liquid-Phase Sintering. Powder Metall Met Ceram 51, 639–656 (2013). https://doi.org/10.1007/s11106-013-9480-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-013-9480-3

Keywords

Navigation