Skip to main content

Advertisement

Log in

Effect of magnetic treatment on the microstructure and strength of WC–Co detonation-sprayed coatings

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The influence of magnetic treatment on fracture of the WC–Co detonation-sprayed coating–St3 steel substrate system is studied in bending tests. It is established that magnetic treatment leads to the redistribution of elements at the coating–substrate interface. It is shown that magnetic treatment improves the mechanical properties of the coating–substrate system: plastic strain of the system increases from 0.15% to 0.35% when coating starts cracking and stresses developed at fracture increase from 700 to 1300 MPa. The improvement of properties is due to better adhesion at the coating–substrate interface resulting from diffusion-controlled redistribution of elements during magnetic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. A. Chebotkevich, A. A. Urusovskaya, and V. V. Veter, Kristallografiya, 10, No. 4, Issue 2, 688 (1965).

    CAS  Google Scholar 

  2. L. A. Chebotkevich, A. A. Urusovskaya, V. V. Veter, and A. D. Ershov, “Interaction of Bloch surfaces with dislocations in weak fields,” Fiz. Tverd. Tela, 9, No. 4, 1093–1097 (1967).

    CAS  Google Scholar 

  3. S. Hayashi, S. Takahashi, and M. Yamamoto, “Plastic deformation of nickel single in an alternating magnetic field,” J. Phys. Soc. Jpn., 25, 910 (1968).

    Article  CAS  Google Scholar 

  4. S. Hayashi, S. Takahashi, and M. Yamamoto, “Magneto-plastic effect in nickel single crystals,” J. Phys. Soc. Jpn., 30, No. 2, 381–387 (1971).

    Article  CAS  Google Scholar 

  5. S. Hayashi, S. Takahashi, and M. Yamamoto, “Magneto-plastic effect in nickel and nickel-cobalt alloy single crystals,” J. Phys. Soc. Jpn., 32, No. 4, 949–957 (1972).

    Article  CAS  Google Scholar 

  6. S. Hayashi, S. Takahashi, and M. Yamamoto, “Effect of an alternating magnetic field on the flow stress of Ni and Ni–Co,” Phys. Lett., 42, 171–172 (1972).

    Article  CAS  Google Scholar 

  7. E. L. Frankevich, V. I. Lesin, and A. I. Pristupa, “Spin-dependent reactions between structural defects and their effect on the plasticity of crystals in the magnetic field,” Pis’ma Zh. Éksp. Teor. Fiz., 75, Issue 2 (8), 415–427 (1978).

    CAS  Google Scholar 

  8. Yu. I. Golovin, “Magnetic plasticity of solids,” Fiz. Tverd. Tela, 46, No. 5, 769–803 (2004).

    Google Scholar 

  9. V. E. Oliker, T. Ya. Gridasova, V. L. Sirovatka, et al., “Effect of magnetic abrasive treatment on hightemperature oxidation of NiAl and NiAl–Re coatings,” Powder Metall. Met. Ceram., 48, No. 7–8, 466–477 (2009).

    Article  CAS  Google Scholar 

  10. V. E. Oliker, E. N. Eliseeva, T. Ya. Gridasova, et al., “Effect of magnetic treatment on the microstructure of NiAl–Re alloy,” Powder Metall. Met. Ceram., 49, No. 3–4, 245–252 (2010).

    Article  CAS  Google Scholar 

  11. V. E. Oliker, T. Ya. Gridasova, I. I. Timofeeva, et al., “Effect of magnetic treatment on the microstructure and abrasive resistance of WC–Co detonation-sprayed coatings,” Powder Metall. Met. Ceram., 51, No. 5–6, 345–352 (2012).

    Article  CAS  Google Scholar 

  12. M. A. Verzhakovskaya, Heterodiffusion of Aluminum in Iron in Pulsed Magnetic Field [in Russian], Author’s Abstract of PhD Thesis, Samara (2007).

  13. G. V. Spivak, R. V. Telesnin, I. S. Kolotov, et al., Break of Domain Walls in Ferromagnetic Materials under Magnetic Fields [in Russian], http://ross-nauka.narod.ru/06/06-159.html (1970).

  14. L. I. Tushinskii and A. V. Plokhov, Studying the Structure and Mechanical Properties of Coatings [in Russian], Nauka, Novosibirsk (1986), p. 198.

    Google Scholar 

  15. Yu. N. Podrezov, Ya. I. Evich, and N. P. Korzhova, “Fracture toughness of coatings from a eutectic alloy based on L12 intermetallic in the Al–Ti–Cr ternary system,” Élektron. Microsc. Prochn. Mater., Issue 128, 93–99 (2007).

    Google Scholar 

  16. J. F. Knott, Fundamentals of Fracture Mechanics, John Wiley–Halsted Press, New York (1973).

    Google Scholar 

  17. T. P. Shmyreva and G. M. Vorob’ev, “X-ray determination of macrostreses in coatings,” Probl. Prochn., No. 8, 71–73 (1983).

    Google Scholar 

  18. V. A. Barvinok and V. I. Bogdanovich, “Calculation of residual stresses in plasma-deposited coatings considering growing process,” Fiz. Khim. Obrab. Mater., No. 4, 95–100 (1981).

    Google Scholar 

  19. I. M. Fedorchenko, E. I. Ischchenko, and A. I. Bezykornov, “Residual stresses in plasma-deposited coatings,” Zashch. Pokr. Met., Issue No. 14, 55–57 (1980).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Podrezov.

Additional information

Deceased (V. E. Oliker and T. Ya. Gridasova).

Translated from Poroshkovaya Metallurgiya, Vol. 51, No. 7–8 (486), pp. 136–144, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliker, V.E., Podrezov, Y.N., Yarmatov, I.T. et al. Effect of magnetic treatment on the microstructure and strength of WC–Co detonation-sprayed coatings. Powder Metall Met Ceram 51, 485–490 (2012). https://doi.org/10.1007/s11106-012-9458-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-012-9458-6

Keywords

Navigation