Skip to main content
Log in

Synthesis of titanium silicon carbide Ti3SiC2 under isothermal sintering

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The synthesis of Ti3SiC2 in vacuum is studied. The influence of the starting powders, charge composition, and sintering temperature on the phase composition of the material is analyzed. It is established that titanium hydride used instead of metal titanium substantially decreases the onset synthesis temperature and produces almost single-phase material after sintering at 1200–1250°C. However, this Ti3SiC2 does not have adequate density and strength. Practically single-phase Ti3SiC2 with high density and strength is synthesized in the range 1350–1400°C when the silicon content of the charge is higher than its stoichiometric amount by a factor of 1.2–1.25. It is shown that single-phase Ti3SiC2 or material with the required TiC content can be synthesized by variation of silicon content of the charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W. Jeitscko and H. Nowotny, “Die Kristallstruktur von Ti3SiC2—ein neuer Komplexcarbid-Typ,” Monatshefte fur Chem., 98, No. 2, 329 (1967).

    Article  Google Scholar 

  2. H. Nowotny, “Struktuchemie Einiger Verbindungen der Ubergangsmetalle mit den elementen C, Si, Ge, Sn,” Prog. Solid. State Chem., 2, 27 (1970).

    Article  Google Scholar 

  3. W. Jeitschko, H. Nowotny, and F. Benesovsky, “Kohlenstoffhaltige ternare Verbindungen (H-Phase),” Monatshefte Chem., 94, 672 (1963).

    Article  CAS  Google Scholar 

  4. J. J. Nikl, K. K. Schweitzer, and P. Luxenberg, “Gasphasenabscheidung im Sistem Ti–Si–C,” Less-Common Met., 26, No. 3, 335–353 (1972).

    Article  Google Scholar 

  5. T. Goto and T. Hirai, “Chemical vapor deposited Ti3SiC2,” Mat. Res. Bull., 22, 1195 (1987).

    Article  CAS  Google Scholar 

  6. A. G. Merzhanov and I. P. Borovinskaya, “Self-propagation high-temperature synthesis of refractory inorganic compounds,” Dokl. Akad. Nauk SSSR, 204, 366 (1972).

    CAS  Google Scholar 

  7. T. Rudnik, J. Lis, and R. Pampuch, “Optimization of SHS reactions in the Ti–Si–C system in order to control the product properties,” Fourth Eur. Ceram., 4, 431 (1995).

    Google Scholar 

  8. R. Pampuch, J. Biatoskorski, and E. Walasek, “Mechanism of reactions in the Si + C system and self-propagating high-temperature synthesis of silicon carbide,” Ceram. Int., 13, 63 (1987).

    Article  CAS  Google Scholar 

  9. R. Pampuch, J. Lis, L. Stobierski, and M. Tymkiewicz, “Solid combustion synthesis of Ti3SiC2,” J. Eur. Ceram. Soc., 5, 283 (1989).

    Article  CAS  Google Scholar 

  10. J. Lis, R. Pampuch, J. Piekarczyk, and L. Stobierski, “New ceramics based on Ti3SiC2,” Ceram. Int., 19, 219–222 (1993).

    Article  CAS  Google Scholar 

  11. J. Lis, Y. Mijamoto, R. Pampuch, and K. Tanihato, “Ti3SiC2-based materials prepared by HIP-SNS techniques,” Mat. Lett., 22, 163–168 (1995).

    Article  CAS  Google Scholar 

  12. Ya. N. Blinovskov, V. S. Gorshkov, D. G. Kellerman, et al., “Synthesis and properties of the new ceramic material Ti3SiC2,” Fourth Eur. Ceram., 4, 251 (1995).

    Google Scholar 

  13. Latest Processes and Materials in Powder Metallurgy (Collected Scientific Papers) [in Russian], Kiev (1997), p. 163.

  14. T. Okano, T. Yano, and T. Iseki, “Synthesis and mechanical properties of Ti3SiC2 ceramic,” Trans. Met. Soc. Jpn., 14A, 597 (1993).

    Google Scholar 

  15. M. W. Barsoum and T. El-Raghy, “A progress report on Ti3SiC2, Ti3GeC2 and the H-phases, M2BX,” J. Mater. Synth. Process., 5, 197 (1997).

    CAS  Google Scholar 

  16. M. W. Barsoum, “The M n+1AX n phases: a new class of solids,” Progress Sol. St. Chem., 28, 201–281 (2000).

    Article  CAS  Google Scholar 

  17. M. W. Barsoum and T. El-Raghy, “Synthesis and characterization of a remarkable ceramic Ti3SiC2,” J. Am. Ceram. Soc., 79, No. 79, 1953 (1998).

    Google Scholar 

  18. I. I. Ivanova and A. N. Demidik, “Hydride method of producing titanium intermetallics,” Proc. 7th Int. Conf. Hydrogen Materials Science and Chemistry of Metal Hydrides [in Russian], Kiev (2001), pp. 450– 451.

  19. S. A. Firstov, E. P. Pechkovsky, I. I. Ivanova, et al., “High-temperature mechanical properties of powder metallurgy porous lightweight titanium nanolaminates,” High Temp. Mater. Processes, 25, No. 1–2, 47–58 (2006).

    CAS  Google Scholar 

  20. S. A. Firstov, V. F. Gorban’, I. I. Ivanova, and E. P. Pechkovsky, “Mechanical behavior of sintered porous two-phase titanium nanolaminate composites at high temperatures,” Eng. Mater., 409, 300–303 (2009).

    CAS  Google Scholar 

  21. S. A. Firstov, V. F. Gorban’, A. N. Demidik, et al., “Determining strength and strain of porous two-phase nanolaminates with automated indentation,” Materialovedenie, No. 5, 32–38 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Ivanova.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 51, No. 7–8 (486), pp. 79–91, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanova, I.I., Demidik, A.N., Karpets, M.V. et al. Synthesis of titanium silicon carbide Ti3SiC2 under isothermal sintering. Powder Metall Met Ceram 51, 437–446 (2012). https://doi.org/10.1007/s11106-012-9453-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-012-9453-y

Keywords

Navigation