Skip to main content
Log in

Compaction and elastic unloading of nanopowders under the granular dynamic method

  • Theory and Technology of Forming Process
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The method of granular dynamics is used to study the quasistatic uniaxial compaction of nanopowders with a particle size from 10 nm to several hundred nanometers. The interaction of individual particles includes Hertz elastic forces, Cattaneo–Mindlin friction forces, and van der Waals dispersion forces of attraction. The influence of the model cell size on simulation results is analyzed. The curves of uniaxial compression and elastic unloading in the “axial pressure–density” coordinates are plotted. The generalization of the traditional Hertz law in the range of relatively high strains is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. B. Shtern, G. G. Serdyuk, L. A. Maksimenko, et al., Phenomenological Theories of Powder Compaction [in Russian], Naukova Dumka, Kiev (1982), p. 140.

    Google Scholar 

  2. G. Sh. Boltachev, N. B. Volkov, S. V. Dobrov, et al., “Modeling radial magnetic-discharge compaction of granular medium in quasistatistical approximation,” Zh. Tekh. Fiz., 77, No. 10, 58–67 (2007).

    Google Scholar 

  3. M. B. Shtern and V. D. Rud’, Mechanical and Computer Models for Consolidation of Granulated Media Based on Metal and Ceramic Powders [in Russian], Lutsk Nats. Tekh. Univ., Kiev–Lutsk (2010), p. 232.

  4. P. A. Cundall and O. D. L. Strack, “A discrete numerical model for granular assemblies,” Geotechnique, 29, No 1, 47–65 (1979).

    Article  Google Scholar 

  5. I. Agnolin and J.-N. Roux, “Internal states of model isotropic granular packings,” Phys. Rev. E, 76, 061302; 061303; 061304 (2007).

    Google Scholar 

  6. F. Nicot and F. A. Darve, “A multi-scale approach to granular materials,” Mech. Mat., 37, No 9, 980–1006 (2005).

    Google Scholar 

  7. A. Balakrishnan, P. Pizette, C. L. Martin, et al., “Effect of particle size in aggregated and agglomerated ceramic powders,” Acta Mat., 58, 802–812 (2010).

    Article  CAS  Google Scholar 

  8. G. Sh. Boltachev and N. B. Volkov, “Size effect in compaction of nanopowders,” Pis’ma Zh. Tekh. Fiz., 36, Issue 17, 96–103 (2010).

    Google Scholar 

  9. H. Hertz, “Uber die Beruhrung fester elastischer Korper,” J. Reine Angew. Math., B92, 156–171 (1881).

    Google Scholar 

  10. L. D. Landau and E. M. Lifshitz, Theoretical Physics. Volume VII. Theory of Elasticity [in Russian], Nauka, Moscow (1987), p. 248.

    Google Scholar 

  11. G. Sh. Boltachev, N. B. Volkov, and K. A. Nagayev, “Effect of retardation in the dispersion forces between spherical particles,” J. Coll. Int. Sci., 355, No. 2, 421–426 (2011).

    Article  Google Scholar 

  12. S. Luding, “Cohesive, frictional powders: contact models for tension,” Granular Mat., 10, 235–246 (2008).

    Article  Google Scholar 

  13. A. P. Babichev, N. A. Babushkina, A. M. Bratkovskii, et al., in: I. S. Grigor’ev and E. Z. Meilikhov (eds.), Physical Quantities: Handbook [in Russian], Énergoatomizdat, Moscow (1991), p. 1232.

  14. V. V. Ivanov, S. N. Paranin, A. N. Vikhrev, and A. A. Nozdrin, “Effectiveness of eh dynamic method of compacting nanosized powders,” Materialovedenie, No. 5, 49–55 (1997).

  15. E. Dintwa, E. Tijskens, and H. Ramon, “On the accuracy of the Hertz model to describe the normal contact of soft elastic spheres,” Granular Mater., 10, 209–221 (2008).

    Article  Google Scholar 

  16. R. M. McMeeking, G. Jefferson, and G. K. Haritos, “Elastic and viscoelastic response of finite particle junctions in granular materials,” in: A. Zavaliangos and A. Laptev (eds.), Recent Developments in Computer Modeling of Powder Metallurgy Processes, IOS Press, Amsterdam (2001), pp. 50–62.

    Google Scholar 

Download references

Acknowledgements

The study was supported by the Russian Fundamental Support Fund (Projects 09-08-00198 and 12-08-00298) under the “Fundamental Problems of Nonlinear Dynamics” Program (Project 09-P-2-1003), Presidium of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sh. Boltachev.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 51, No. 5–6 (485), pp. 12–21, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boltachev, G.S., Volkov, N.B. Compaction and elastic unloading of nanopowders under the granular dynamic method. Powder Metall Met Ceram 51, 260–266 (2012). https://doi.org/10.1007/s11106-012-9426-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-012-9426-1

Keywords

Navigation