Skip to main content
Log in

Properties of Cu–Al–Mn shape memory alloy fibers produced by melt quenching

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The paper examines the vacuum-sealed melt quenching and the properties of Cu–12% Al–3.5% Mn shape memory alloy fibers. The average effective diameter of the fibers is 113 μm. The temperatures of martensite transformations are determined by resistometric technique. Significant grain refinement, from 0.75 mm (in the starting alloy) to 40 μm (in the fibers), is achieved by rapid melt quenching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Sittner and R. Stalmans, “Developing hybrid polymer composites with embedded shape-memory alloy wires,” JOM, 52, No. 10, 15–20 (2000).

    Article  CAS  Google Scholar 

  2. G. A. Molodtsov, V. E. Bitkin, V. F. Simonov, and F. F. Urmasov, Shape-Stable and Intellectual Designs of Composite Materials [in Russian], Mashinostroenie, Moscow (2000), p. 352.

    Google Scholar 

  3. V. A. Vasil’ev, B. S. Mitin, I. N. Pashkov, et al., High-Speed Melt Solidification [in Russian], Intermet Engineering, Moscow (1998), p. 400.

    Google Scholar 

  4. N. V. Tereshin, “Producing fibers from titanium nickelide by melt extraction,” Izv. Vusov. Tsvet. Metall., No. 1, 38–41 (2000).

  5. A. G. Kostornov, V. N. Klimenko, M. M. Serov, et al., “Production of TiNi fibers by melt extraction,” Powder Metall. Met. Ceram., 47, No. 7–8, 384–388 (2008).

    Article  Google Scholar 

  6. K. Otsuka, K. Shimizu, Y. Suzuki, et al., Shape Memory Alloys [Russian translation], Metallurgiya, Moscow (1990).

    Google Scholar 

  7. G. G. Zak, G. Z. Zatul’skii, and K.-H. Jach, “Melt quenching of aluminum bronze with shape memory effect,” Prots. Lit., No. 2, 80–83 (1998).

    Google Scholar 

  8. J. Dutkiewicz, J. Morgiel, T. Czeppe, and E. Cesari, “Martensitic transformation in CuAlMn and CuAlNi melt spun ribbons,” J. Physique IV, 7, Issue C5, 167–172 (1997).

    Google Scholar 

  9. Yuhong Zheng, Chongjian Li, Farong Wan, and Yi Long, “Cu–Al–Mn alloy with shape memory effect at low temperature,” J. All. Compd., 441, 317–322 (2007).

    Article  Google Scholar 

  10. U. S. Mallik and V. Sampath, “Effect of composition and ageing on damping characteristics of Cu–Al–Mn shape memory alloys,” Mater. Sci. Eng., 478A, 48–55 (2008).

    Google Scholar 

  11. L. E. Kozlova and A. N. Titenko, “Stress-induced martensitic transformation in polycrystalline aged Cu–Al–Mn alloys,” Mater. Sci. Eng., 438–440A, 738–742 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Klimenko.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 51, No. 3–4 (484), pp. 75–81, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostornov, A.G., Klimenko, V.N., Serov, M.M. et al. Properties of Cu–Al–Mn shape memory alloy fibers produced by melt quenching. Powder Metall Met Ceram 51, 186–190 (2012). https://doi.org/10.1007/s11106-012-9415-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-012-9415-4

Keywords

Navigation