Skip to main content
Log in

Constitution of alloys and phase diagram of the Al–Ti–Rh system. III. Solidus surface of the Ti–TiRh–AlRh–Al partial system

  • Physicochemical Materials Research
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The data obtained by metallography, x-ray diffraction, electron microprobe and differential thermal analyses as well as by Pirani–Alterthum incipient melting technique are used to construct the solidus surface projection of the Ti–TiRh–AlRh–Al partial system onto the composition triangle for the first time. The participation of two ternary compounds (τ1, Al67Ti27Rh6, with AuCu3-type structure, and τ2, Al49.6Ti27.1Rh23.3, with Th6Mn23+1-type structure) in phase equilibria is confirmed. Thirteen single-phase surfaces corresponding to solid solutions based on components and to the phases based on binary and ternary compounds are found on the solidus surface. This surface also contains 25 ruled surfaces bounding two-phase volumes as well as 13 isothermal planes that are constituents of invariant four-phase equilibria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. K. E. Kornienko, V. G. Khoruzha, P. S. Martsenyuk, et al., “Alloys and phase equilibria in the Al–Ti–Rh system. I. Solidus surface of the TiRh–Rh–AlRh partial system,” Powder Metall. Met. Ceram., 46, No. 9– 10, 454–460 (2007).

    Article  CAS  Google Scholar 

  2. K. E. Kornienko, V. G. Khoruzha, P. S. Martsenyuk, et al., “Alloys and phase equilibria in the Al–Ti–Rh system. II. Melting diagram of the TiRh–Rh–AlRh partial system,” Powder Metall. Met. Ceram., 46, No. 11–12, 550–555 (2007).

    Article  CAS  Google Scholar 

  3. P. Rogl, J. Ding, and R. Podloucky, “Structural chemistry and constitution in TiAl-based intermetallics,” in: Proc. 7th Int. Conf. Crystal Chemistry of Intermetallic Compounds (September 22–25, 1999), Lviv (1999), p. L.2.

  4. J. J. Ding, P. Rogl, H. Schweiger, and R. Podloucky, “TiAl-based intermetallics: Constitution and structural chemistry,” in: Program and Abstracts of 13th Int. Conf. Solid Compounds of Transition Elements (Stresa, Italy, April 4–7, 2000), Genova (2000), p. C32.

  5. J. J. Ding, P. Rogl, H. Schmidt, and R. Podloucky, “Structure chemistry and constitution in TiAl-based intermetallics,” Visn. Lviv Univ., Ser. Khim., 39, 136141 (2000).

    Google Scholar 

  6. V. G. Khoruzhaya, K. E. Kornienko, P. S. Martsenyuk, and T. Ya. Velikanova, “Phase equilibria in the system AlRh,” Powder Metall. Met. Ceram., 45, No. 5–6, 251–258 (2006).

    Article  CAS  Google Scholar 

  7. V. T. Witusiewicz, A. A. Bondar, U. Hecht, et. al., “The Al–B–Nb–Ti system. III. Thermodynamic reevaluation of the constituent binary system Al–Ti,” J. Alloys Compd., 465, 64–77 (2008).

    Article  CAS  Google Scholar 

  8. W. N. Yeremenko and T. D. Stepa, “Phasengleichgewichte in Zweistoffsytemen des Titans mit Ruthenium, Osmium, Rhodium, Iridium und Palladium,” Colloq. Int. CNRS, No. 205, 1972 (403–413).

  9. L. E. Edshammar, “The crystal structure of Rh2Al9 and Ir2Al9,” Acta Chem. Scandinavica, 22, 2822–2826 (1968).

    Article  CAS  Google Scholar 

  10. B. Grushko, J. Gwózdz, and M. Yurechko, “Investigation of the Al–Cu–Rh phase diagram in the vicinity of the decagonal phase,” J. Alloys Compd., 305, 219–224 (2000).

    Article  CAS  Google Scholar 

  11. Yu. Grin, K. Peters, V. Burkhardt, et al., “The crystal structure of the binary iridium–aluminium IrAl2.75 and rhodium–aluminium RhAl2.63 phase,” Z. Kristallogr., 212, 439–444 (1997).

    Article  CAS  Google Scholar 

  12. J. C. Schuster and M. Palm, “Reassessment of the binary aluminum–titanium phase diagram,” J. Phase Equilib. Diffusion, 27, No. 3, 255–277 (2006).

    Article  CAS  Google Scholar 

  13. J. C. Schuster and H. Ipser, “Phases and phase equilibria in the partial system TiAl3–TiAl,” Z. Metallkd., 81, No. 6, 383–386 (1990).

    Google Scholar 

  14. J. Braun and M. Ellner, “Phase equilibria investigations on the aluminum-rich part of the binary system Ti– Al,” Metall. Mat. Trans. A, 32A, 1037–1047 (2001).

    Article  CAS  Google Scholar 

  15. Y. Nakayama and H. Mabuchi, “Formation of ternary L12 compounds in Al3Ti-base alloys,” Intermetallics, 1, No. 1, 41–48 (1993).

    Article  Google Scholar 

  16. A. Grytsiv, P. Rogl, H. Schmidt, et al., “Formation and crystal chemistry of cubic ternary phases with filled Th6Mn23-type and AuCu3-type in the systems Ti–MVIII–Al,” Intermetallics, 12, 563–577 (2004).

    Article  CAS  Google Scholar 

  17. E. Ganglberger, H. Nowotny, and F. Benesovsky, “Neue G-Phasen,” Monatsh. Chem., 97, No. 3, 829–832 (1966).

    Article  CAS  Google Scholar 

  18. M. Pirani and H. Alterthum, “Über eine Methode für Scmelzpunktbestimmung an Hochschmelzenden Metallen,” Z. Electrochem., 29, No. 1–2, 5–8 (1923).

    CAS  Google Scholar 

  19. Yu. A. Kocherzhinskii, E. A. Shishkin, and V. I. Vasilenko, “Apparatus for differential thermal analysis with a thermocouple sensor to 2200°C,” in: Phase Diagrams of Metal Systems [in Russian], Nauka, Moscow (1971), pp. 245249.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to P. S. Martsenyuk for participation in DTA and thank L. A. Duma for participation in x-ray analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Kornienko.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 50, No. 9–10 (481), pp. 85–101, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kornienko, K.E., Khoruzha, V.G. & Vereshchaka, V.M. Constitution of alloys and phase diagram of the Al–Ti–Rh system. III. Solidus surface of the Ti–TiRh–AlRh–Al partial system. Powder Metall Met Ceram 50, 641–654 (2012). https://doi.org/10.1007/s11106-012-9370-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-012-9370-0

Keywords

Navigation