Skip to main content
Log in

Microstructural evaluation of zirconia dispersed alumina composites

  • Structural Materials Research
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

An extensive scanning electron microscopy and image analysis is carried out on Alumina and Zirconia Dispersed Alumina (ZDA) ceramic composites containing controlled amounts of tetragonal, monoclinic, and cubic zirconia phases. ZDA powders are prepared through a partial chemical route and sintered at 1600°C for 2 h in air. Zirconia nanoparticles reduce alumina matrix grain size by more than six times. Intricate relationships are revealed between zirconia allotropes and different microstructural parameters such as matrix grain size and its distribution, abnormal grain growth, zirconia particle size distribution, pore size, fracture mode, interparticle distance, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Claussen, “Fracture toughness of alumina with unstabilized zirconia,” J. Amer. Ceram. Soc., 59, 49–51 (1976).

    Article  CAS  Google Scholar 

  2. N. Claussen, J. Steep, and R. F. Pabset, “Effect of induced microcracking on the fracture of ceramics,” American Ceramic Society bulletin, 56, 559–562 (1977).

    CAS  Google Scholar 

  3. F. F. Lange, “Transformation toughening part-4, fabrication, fracture toughness and strength of aluminazirconia composites,” J. Mater. Sci., 17, 247–254 (1982).

    Article  CAS  Google Scholar 

  4. T. Kosmac, M. V. Swain, and N. Claussen, “The role of tetragonal and monoclinic zirconia particles in the fracture toughness of alumina-zirconia composites,” Materials Sci. Eng., 71, 57–67 (1985).

    Article  CAS  Google Scholar 

  5. Mc. R. Meecking and A. G. Evans, “Mechanics of transformation toughening in brittle materials,” J. Amer. Ceram. Soc., 65, 242–246 (1982).

    Article  Google Scholar 

  6. A. G. Evans and R. M. Cannon, “Transformation of brittle solids by martensitic transformations,” Acta Metallurgica, 34, 242–246 (1986).

    Google Scholar 

  7. F. F. Lange and M. Metcalf, “Processing related fracture origins: II, agglomeration and crack-like internal surfaces caused by differential sintering,” J. Amer. Ceram. Soc., 66, 398–406 (1983).

    Article  CAS  Google Scholar 

  8. B. W. Kibbel and A. H. Heuer, “Exaggerated grain growth in ZTA,” J. Amer. Ceram. Soc., 69, 231–236 (1986).

    Article  CAS  Google Scholar 

  9. J. Chandradass, and M. Balasubramanian, “Sol-gel processing of alumina-zirconia minispheres,Ceramics International, 31, 743–748 (2005).

    Article  CAS  Google Scholar 

  10. S. Kureti, and W. Weisweiler, “A novel sol-gel method for the synthesis of gamma-alumina,” J. Non-Crystalline Sol., 303, 253–261 (2002).

    Article  CAS  Google Scholar 

  11. S. Ramanathan, K. K. Roy, R. Bhat, et al., “Preparation and characterization of boehmite precursor and sinterable alumina powder from aqueous aluminum chloride urea reaction,” J. Alloys and Comp., 243, 39–44 (1996).

    Article  CAS  Google Scholar 

  12. G. Li, W. Li, M. Zhang, and K. Tao, “Characterization and catalytic application of homogeneous nanocomposite oxides alumina-zirconia,” Catalysis Today, 93–95, 595–601 (2004).

    Article  Google Scholar 

  13. K. Ranjbar, PhD Thesis, IIT Bombay, Mombay, India (1994).

  14. K. Tahmasebi and M. H. Paydar, “Effect of starch addition on solution combustion synthesis of aluminazirconia nanocomposite powder using urea as fuel,” Materials Chemistry and Physics, 109, 156–163 (2008).

    Article  CAS  Google Scholar 

  15. R. C. Garvie and P. S. Nicholson, “Structure and thermodynamical properties in the PSZ, in CaO–ZrO2 system,” J. Amer. Ceram. Soc., 55, 303–305 (1972).

    Article  CAS  Google Scholar 

  16. F. F. Lange and M. M. Hirlinger, “Hindrance of grain growth in alumina by zirconia particles,” J. Amer. Ceram. Soc., 67, 164–168 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ranjbar.

Additional information

Published in Poroshkovaya Metallurgiya, Vol. 49, No. 11–12 (476), pp. 131–139, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranjbar, K. Microstructural evaluation of zirconia dispersed alumina composites. Powder Metall Met Ceram 49, 722–729 (2011). https://doi.org/10.1007/s11106-011-9294-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-011-9294-0

Keywords

Navigation