Skip to main content
Log in

Mechanical properties of porous Ti3SiC2/TiC, Ti3AlC2/TiC, and Ti4AlN3/TiN nanolaminates at 20 to 1300°C

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The microindentation, macrohardness, and uniaxial compression methods are used to examine the effect of porosity (5–35%), content of the other phase (TiC or TiN, 5–70 vol.%), and loading temperature (20–1300°C) on the mechanical properties of Ti3SiC2/TiC, Ti3AlC2/TiC, and Ti4AlN3/TiN nanolaminate composites produced by reaction sintering of powder mixtures. A comparative analysis of the mechanical properties shows that the strength of the materials increases in the following sequence: Ti3AlC2/TiC, Ti4AlN3/TiN, and Ti3SiC2/TiC. Temperature–strain and force boundaries of their existence in the deformed state are established. Among all porous nanolaminate composites investigated, Ti3SiC2/TiC is the most optimal in respect to porosity, content of the other phase, and strength: 24% porosity and 30 vol.% titanium carbide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. W. Barsoum, “The MN+1AXN phases: A new class of solids; thermodynamically stable nanolaminates,” Prog. Solid St. Chem., 28, 201–281 (2000).

    Article  CAS  Google Scholar 

  2. M. W. Barsoum, T. El-Raghy, and M. Radovic, “Ti3SiC2: A layered machinable ductile carbide,” Interceram., 49, No. 4, 226–233 (2000).

    CAS  Google Scholar 

  3. N. P. Brodnikovksii, É. P. Pechkovskii, S. A. Firstov, et al., “Mechanical behavior of titanium–silicon carbide Ti3SiC2 depending on the structural state and deformation conditions,” Metallofiz. Noveish. Tekhnol., 25, No. 9, 1179–1200 (2003).

    Google Scholar 

  4. H. Zhang, Z. G. Wang, Q. S. Zang, et al., “Cyclic fatigue crack propagation behavior of Ti3SiC2 synthesized by pulse discharge sintering (PDS) technique,” Scr. Mat., 49, 87–92 (2003).

    Article  CAS  Google Scholar 

  5. W. B. Zhou, B. C. Mei, and J. Q. Zhu, “Fabrication of high-purity ternary carbide Ti3SiC2 by spark plasma sintering technique,” Mat. Let., 59, 1547–1551 (2005).

    Article  CAS  Google Scholar 

  6. S. A. Firstov and E. P. Pechkovsky, “Structure and mechanical properties of sintered compact and porous nanolaminates (Ti3SiC2) in the temperature range 20–1300°C,” in: 2004 Powder Metallurgy World Congress (October 17–21, 2004, Vienna, Austria), Vienna (2004), Vol. 4, pp. 725–730.

  7. V. F. Gorban’, B. V. Vinokurov, O. N. Grigor’ev, et al., “Microindentation and macroindentation of titanium silicon carbide Ti3SiC2,” Powder Metall. Met. Ceram., 44, No. 3–4, 181–190 (2005).

    Article  Google Scholar 

  8. S. A. Firstov, É. P. Pechkovskii, I. I. Ivanova, et al., “Effect of the composition and porosity of sintered titanium nanolaminates on the mechanical properties at high temperatures,” Probl. Prochn., No. 6, 79–94 (2006).

    Google Scholar 

  9. Yong Du, Julius C. Schuster, Hans J. Seifert, and Fritz Aldinger, “Experimental investigation and thermodynamic calculation of the titanium–silicon–carbon system,” J. Am. Ceram. Soc., 83, No. 1, 197–203 (2000).

    Article  Google Scholar 

  10. F. H. Hayes, “Titanium–aluminum–carbon system,” in: G. Petzow and G. Effenberg (eds.), Ternary Alloys, Vol. 3, 557–566 (1990).

  11. O. M. Barabash and Yu. N. Koval’, Structure and Properties of Metals and Alloys. Crystal Structure of Metals and Alloys [in Russian], Naukova Dumka, Kiev (1986), p. 598.

    Google Scholar 

  12. S. Konoplyuk, T. Abe, T. Uchimoto, and T. Takagi, “Synthesis of Ti3SiC2/TiC composites from TiH2/SiC/TiC powders,” Mat. Let., 59, 2342–2346 (2005).

    Article  CAS  Google Scholar 

  13. E. Aznakayev, “Micron-gamma for estimation the physical-mechanical properties of micromaterials,” in: Proc. Int. Conf. ‘Small Talk–2003’, San Diego, California, USA (2003), TP.001, p. 8.

  14. ISO 14577-1:2002(E), Instrumented Indentation Test for Hardness and Materials Parameters, Part 1: Test Method, September 22 (2002).

  15. S. A. Firstov, V. F. Gorban’, É. P. Pechkovskii, and N. A. Mameka, “Indentation equation,” Dop. NAN Ukrainy, No. 12, 100–106 (2007).

  16. S. A. Firstov, V. F. Gorban’, É. P. Pechkovskii, and N. A. Mameka, “Relation of strength characteristics of materials with instrumented indentation data,” Materialoved., No. 11, 26–31 (2007).

    Google Scholar 

  17. V. F. Gorban’, N. A. Mameka, É. P. Pechkovskii, and S. A. Firstov, “Identification of the structural state of materials by instrumented indentation,” in: Kharkov Nanotechnology Assembly-2007. Volume I. Nanostructured Materials [in Russian], Kharkov (2007), pp. 52–55.

  18. S. A. Firstov, V. F. Gorban’, and É. P. Pechkovskii, “Ultimate strains and stresses in nanomaterials,” in: Kharkov Nanotechnology Assembly-2008. Volume II, Nanomaterials: New Favorites in Industry [in Russian], Kharkov (2008), pp. 145–153.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Pechkovskii.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 49, No. 7–8 (474), pp. 56–68, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Firstov, S.A., Gorban’, V.F., Ivanova, I.I. et al. Mechanical properties of porous Ti3SiC2/TiC, Ti3AlC2/TiC, and Ti4AlN3/TiN nanolaminates at 20 to 1300°C. Powder Metall Met Ceram 49, 414–423 (2010). https://doi.org/10.1007/s11106-010-9252-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-010-9252-2

Keywords

Navigation