Skip to main content
Log in

Effect of the structure and chemical inhomogeneity of rapidly solidified powders on the properties of aluminum alloys

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The paper examines the effect of chemical and structural inhomogeneity formed in the rapid crystallization of aluminum powders on the structure and mechanical properties of alloys produced from these powders. The powders are obtained by high-pressure water atomization. High-strength and high-temperature Al–Zn–Mg, Al–Zn–Mg–Cu, Al–Fe–Cr, Al–Cr–Zr, and Al–Fe–Ce alloys additionally doped with transition metals and scandium are studied. Auger electron spectroscopy, secondary ion mass spectroscopy, and scanning and transmission electron microscopy are used. To examine mechanical properties, tensile tests at room and elevated temperatures are used. The contribution of different doping elements to the segregation and formation of an oxide film on the powders and their effect on the phase composition and mechanical properties are studied. It is shown that the cooling rate determines characteristics of the alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. D. Neikov, S. S. Naboychenko, and G. Dowson, “Advanced aluminum alloy powders,” in: Handbook of Non-Ferrous Metal Powders, Elsevier Publishers, Amsterdam (2009), pp. 284–313.

  2. O. D. Neikov, G. I. Vasilieva, A. V. Sameljuk, et al., “Water atomized aluminum alloy powders,” Mater. Sci. Eng (A), 383, No. 1, 7–13 (2004).

    Article  Google Scholar 

  3. O. Neikov, A. Krajnikov, A. Sameljuk, et al., “An experimental study of water atomization of aluminum alloys,” in: V. Arnold, C.–L. Chu, W. Jandeska Jr., and H. Sanderow (eds.), Advances in Powder Metallurgy and Particulate Materials, Metal Powder Industries Federation, Princeton, New Jersey (2002), Vol. 3, pp. 73–85.

  4. O. Neikov, A. Krajnikov, V. Panasenko, et al., “Explosion–security of manufacture processes of advanced water atomized aluminum alloy P/M technology,” in: V. Arnhold, C.–L. Chu, W. Jandeska Jr., and H. Sanderow (eds.), Advances in Powder Metallurgy and Particulate Materials, Metal Powder Industries Federation, Princeton, New Jersey (2002), Vol. 3, pp. 60–69.

  5. A. V. Krajnikov, Yu. V. Shmakov, and G. E. Thompson, “High-strength weldable Al–Zn–Mg–base alloys produced by water atomization,” Mater. Sci. Techn., 19, No. 9, 1207–1214 (2003).

    Article  CAS  Google Scholar 

  6. O. D. Neikov, Yu. V. Milman, A. I. Sirko, et al., “Elevated temperature aluminum alloys produced by water atomization,” Mater. Sci. Eng. (A), 477, 80–85 (2008).

    Article  Google Scholar 

  7. O. D. Neikov, D. V. Lotsko, A. I. Sirko, et al., “Properties of rapidly solidified powder alloys of the Al–Zn–Mg system,” Mater. Sci. Forum, 396–402, Part 1, 1223–1228 (2002).

    Google Scholar 

  8. O. D. Neikov, A. V. Sameljuk, G .I. Vasilieva, et al., “Advanced PM aluminum alloys produced by new rapid solidification technology,” in: H. Danninger and R. Ratzi (eds.), Proc. 2004 Powder Metall. World Cong. (October 17–21, 2004, Vienna, Austria), European Powder Metallurgy Association, Vienna (2004), Vol. 1, pp. 237–242.

  9. P. Lejcek and S. Hofmann, “Thermodynamics and structural aspects of grain boundary segregation,” Crit. Rev. Solid State Mater. Res., 20, No. 1, 1–85 (1995).

    Article  CAS  Google Scholar 

  10. “Properties of elements,” in: G. V. Samsonov (ed.), Physical Properties [in Russian], Part 1, Metallurgiya, Moscow (1976), p. 600.

  11. D. J. Bray, “Cast and rapidly solidified magnesium alloys,” New Light Alloys, AGARD Lecture Series, No. 174, Advisory Group for Aerospace Research and Development, NATO, 7.1–7.28 (1990).

  12. O. D. Neikov, Yu. V. Milman, D. B. Miracle, et al., “Effect of powder size on mechanical properties of elevated temperature aluminum alloys produced by water atomization,” in: Proc. Europ. Cong. Powder Metall. (October 22–24, 2001, Nice, France), Nice (2001), Vol. 2, pp. 225–230.

  13. B. S. Bokshtein, S. Z. Bokshtein, and A. A. Zhukhovitskii, Thermodynamics and Diffusion Kinetics in Solids [in Russian], Metallurgiya, Moscow (1974), p. 280.

    Google Scholar 

  14. K. E. Knipling, D. C. Dunand, and D. N. Seidman, “Criteria for developing castable, creep–resistant aluminum based alloys—a review,” Z. Metallkunde, 97, No. 3, 246–265 (2006).

    CAS  Google Scholar 

  15. C. R. Werrett, D. R. Pyke, and A. K. Bhattacharya, “XPS studies of oxide growth and segregation in aluminum–silicon alloys,” Surf. Interface Analysis, 25, 809–816 (1997).

    Article  CAS  Google Scholar 

  16. A. V. Krajnikov, M. Gastel, H. M. Ortner, et al., ‘Surface chemistry of water–atomized aluminum alloy powders,” Appl. Surf. Sci., 191, No. 1, 26–43 (2002).

    Article  CAS  Google Scholar 

  17. J. L. Estrada and J. Duszczyk, “Characteristics of rapidly solidified Al–Si–X powders for high-performance applications,” J. Mater. Sci., 25, 886–904 (1990).

    CAS  Google Scholar 

  18. A. Nylund and I. Olefjord, “Surface analysis of ultrasonically gas atomized aluminum and aluminum alloy powders,” Int. J. Rapid Solidif., 4, 271–286 (1989).

    Google Scholar 

  19. T. J. Carney, P. Tsakiropoulos, J. F. Watts, et al., “Oxidation and surface segregation in rapidly solidified Al alloy powders,” Int. J. Rapid Solidif., 5, 189–217 (1990).

    CAS  Google Scholar 

  20. G. R. Wakerfield and R. M. Sharp, “The composition of oxides formed on Al–Mg alloys,” Appl. Surf. Sci., 51, 95–102 (1991).

    Article  Google Scholar 

  21. A. V. Krajnikov, V. V. Likutin, and G. E. Thompson, “Comparative study of surface chemistry of Al–Cr–Fe alloy powders produced by water and gas atomization technologies,” Appl. Surf. Sci., 210, No. 3-4, 318–328 (2003).

    Article  CAS  Google Scholar 

  22. V. V. Likutin, A. V. Krainikov, and J. E. Tompson, “Morphology and composition of oxide films on powders of rapidly crystallized aluminum alloys,” Fiz. Met. Materialoved., 97, No. 4, 58–70 (2004).

    CAS  Google Scholar 

  23. A. V. Krajnikov, M. Gastel, and H. M. Ortner, “Surface characterization of water–atomized Al–Zn–Mg–Cu alloy powders by SIMS and AES,” Microchim. Acta., 138, No. 1–2, 1–12 (2002).

    Article  CAS  Google Scholar 

  24. V. Demange, J. W. Anderegg, J. Ghanbaja, et al., “Surface oxidation of Al–Cr–Fe alloys characterized by X-ray photoelectron spectroscopy,” Appl. Surf. Sci., 173, 327–338 (2001).

    Article  CAS  Google Scholar 

  25. W. M. Mullins and B. L. Averbach, “Bias reference X-ray photoelectron spectroscopy of sapphire and yttrium aluminum garnet crystals,” Surf. Sci., 206, No. 1–2, 29–40 (1988).

    Article  CAS  Google Scholar 

  26. V. I. Elagin, “Conditions and ways for raising crack resistance of high–strength aluminum alloys,” Metal Sci. Heat Treatment, 44, No. 9–10, 371–380 (2002).

    Article  CAS  Google Scholar 

  27. V. I. Elagin, Doping of Deformable Aluminum Alloys by Transition Metals [in Russian], Metallurgiya, Moscow (1975), p. 248.

    Google Scholar 

  28. M. Chemingui, M. Khitouni, K. Jozwiak, et al., “Characterization of the mechanical properties changes in an Al–Zn–Mg alloy after a two–step ageing treatment at 70 and 135°C,” Mater. Design, 31, No. 6, 3134–3139 (2010).

    Article  CAS  Google Scholar 

  29. L.–M. Wu, M. Seyring, M. Rettenmayrand, et al., “Characterization of precipitate evolution in an artificially aged Al–Zn–Mg–Sc–Zr alloy,” Mater. Sci. Eng. (A), 527, No. 4–5, 1068–1073 (2010).

    Article  Google Scholar 

  30. M. Galano, F. Audebert, A. G. Escorial, et al. “Nanoquasicrystalline Al–Fe–Cr–based alloys with high strength at elevated temperature,” J. All. Comp., 495, No. 2, 372–376 (2010).

    Article  CAS  Google Scholar 

  31. D. Vojtech, A. Michalcova, J. Pilch, et al., “Structural characteristics and thermal stability of Al–5.7Cr–2.5Fe–1.3Ti alloy produced by powder metallurgy,” J. All. Comp., 475, No. 1–2, 151–156 (2009).

    Article  CAS  Google Scholar 

  32. D. Vojtech, J. Verner, J. Serak, et al., “Properties of thermally stable PM Al–Cr based alloy,” Mater. Sci. Eng. (A), 458, No. 1–2, 371–380 (2007).

    Article  Google Scholar 

  33. M. Galano, F. Audebert, I. C. Stone, et al., “Nanoquasicrystalline Al–Fe–Cr–based alloys. Part I: Phase transformations,” Acta Mater., 57, No. 17, 5107–5119 (2009.)

    Article  CAS  Google Scholar 

  34. A. Deschamps, L. Lae, and P. Guyot, ‘In situ small–angle scattering study of the precipitation kinetics in an Al–Zr–Sc alloy,” Acta Mater., 55, No. 8, 2775–2783 (2007).

    Article  CAS  Google Scholar 

  35. O. N. Senkov, M. R. Shagiev, S. V. Senkova, et al., “Precipitation of Al3(Sc, Zr) particles in an Al–Zn–Mg–Cu–Sc–Zr alloy during conventional solution heat treatment and its effect on tensile properties,” Acta Mater., 56, No. 15, 3723–3738 (2008).

    Article  CAS  Google Scholar 

  36. G. J. Hildenman, “Aluminum powder alloys—an overview,” in: New Light Alloys, AGARD Lecture Series, No. 174, Advisory Group for Aerospace Research and Development, NATO, 5.1–5.25 (1990).

  37. S.-I. Fujikawa, “Solid solubility and residual resistivity of scandium in aluminum,” J. Less–Common Met., 63, 87–97 (1979).

    Article  CAS  Google Scholar 

  38. Yu. V. Milman, “Scandium–effect on increasing mechanical properties of aluminum alloys,” High Temp. Mater. Proc., 25, No. 1–2, 1–10 (2006).

    CAS  Google Scholar 

  39. L.–M. Wu, W.–H. Wang, Y.–F. Hsu, et al., “Effects of homogenization treatment on recrystallization behavior and dispersoid distribution in an Al–Zn–Mg–Sc–Zr alloy,” J. All. Comp., 456, No. 1–2, 163–169 (2008).

    Article  CAS  Google Scholar 

  40. O. D. Neikov, Yu. V. Mil’man, A. I. Sirko, et al., “Al–Fe–Ce alloys based on water-atomized powders for high-temperature applications,” Powder Metall. Met. Ceram., 46, No. 9–10, 429–435 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Krainikov.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 49, No. 7–8 (474), pp. 34–50, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krainikov, A.V. Effect of the structure and chemical inhomogeneity of rapidly solidified powders on the properties of aluminum alloys. Powder Metall Met Ceram 49, 397–409 (2010). https://doi.org/10.1007/s11106-010-9250-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-010-9250-4

Keywords

Navigation