Skip to main content

Advertisement

Log in

Microstructure and conductivity of hot-pressed Si3N4–TiO2 (TiH2) composites cooled at different rates

  • Structural Materials Research
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

It is established that the cooling rate after hot pressing controls the crystallization and decrystallization in Si3N4–TiO2 (TiH2) composites. The critical cooling rate is 30 deg/min for Si3N4–TiO2 composites and 50 deg/min for Si3N4–TiH2 composites. It is shown that conductivity responds to the microstructural evolution of the composites as defect centers appear. The defects are located at trapping levels of (0.4 ± 0.05)–(1.3 ± 0.05) eV and differ in mutually perpendicular directions. The best combination of properties is shown by the composites with a monotrapping level with an activation energy of 0.8 ± 0.05 eV. These energy levels supposedly belong to the thin layer of amorphous silicon. The nascent defects are probably point defects or an association of point defects because of the low sensitivity of mechanical properties and strong response of conductivity to the cooling rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Rzhanov, Silicon Nitride Ceramics in Electronics [in Russian], Nauka, Novosibirsk (1982), p. 200.

    Google Scholar 

  2. D. Sutor and G. S. Fischman, “Densification and sintering kinetics in sintered silicon nitride,” J. Am. Ceram. Soc., 75, No. 5, 1063–1067 (1992).

    Article  Google Scholar 

  3. A. L. Petrov, A. A. Gavrilyuk, and S. M. Zubritskii, Structure and Properties of Disordered Solids: Manual [in Russian], Irkutsk (2004).

  4. J. E. Wectin, P. L. Pratt, and B. C. Steele, “Crystallization of grain boundary phases in hot-pressed silicon nitride materials. Part 1. Preparation and characterization materials,” J. Mater. Sci., No. 13, 2137–2146 (1978).

    Google Scholar 

  5. V. Ya. Petrovskii, “Role of liquid phase in the formation of sialon ceramic properties,” in: CERAMICS’45, 41–50 (1994).

  6. S. Hayashi, T. Hirai, and R. Hiraga, “Microstructure of Si3N4–TiN composites prepared by chemical-vapor deposition,” J. Mater. Sci., No. 17, 3336–3340 (1982).

    Google Scholar 

  7. J. Zhang, J. S. Yuan, Y. Ma, and A. S. Oates, “Design optimization of stacked layer dielectrics for minimum gate leakage currents,” Solid-State Electronics, No. 44, 2165–6170 (2000).

  8. C. Kawai and A. Yamakawa, Ceramics Int., No. 24, 135–138 (1998).

  9. R. Sabia and L. Ukrainczyk, “Surface chemistry of SiO2 and TiO2 ± SiO2 glasses as determined by titration of soot particles,” J. Noncrystal. Sol., 277, 1–9 (2000).

    Article  CAS  ADS  Google Scholar 

  10. M. A. Kuzenkova and V. V. Ivzhenko, “Effect of titanium hydride additions on the structure and properties of titanium nitride ceramics,” in: Production Methods, Properties, and Applications of Nitrides [in Russian], Zinatne, Riga (1984), p. 118.

  11. V. Ya. Petrovskii and V. Skorokhod, “Physical principles and technological aspects of the production of gradient composites based on oxygen-free ceramics,” Powder Metall. Met. Ceram., 38, No. 3–4, 115–125 (1999).

    Article  CAS  Google Scholar 

  12. G. G. Gnesin, V. M. Kirilenko, and V. Ya. Petrovskii, “Quality control of hot-pressed silicon nitride dielectric materials,” Powder Metall. Met. Ceram., 21, No. 3, 204–208 (1982).

    Google Scholar 

  13. G. V. Samsonov and I. M. Vinnitskii, Refractory Compounds [in Russian], Metallurgiya, Moscow (1976), p. 101

    Google Scholar 

  14. R. A. Andrievskii and I. I. Spivak, Silicon Nitride and Materials on Its Basis [in Russian], Metallurgiya, Moscow (1984), p. 368.

    Google Scholar 

  15. Minerals: Handbook, Vol. 2, Issue 2. Simple Oxides [in Russian], Nauka, Moscow (1965), p. 67.

  16. O. A. Golikova, “Icosahedral borides and amorphous boron,” Fiz. Tekh. Polyprov., 26, No. 9, 1604–1611 (1992).

    CAS  Google Scholar 

  17. N. F. Mott and E. A. Davis, Electronic Processes in Noncrystalline Materials, Clarendon Press, Oxford (1979).

    Google Scholar 

  18. H. S. Thorp and R. I. Sharif, “Electrical conductivity in hot-pressed nitrogen ceramics,” J. Mater. Sci., 11, No. 8, 1494–1500 (1976).

    Article  CAS  ADS  Google Scholar 

  19. H. S. Thorp and R. I. Sharif, “D. C. electrical properties of hot-pressed nitrogen ceramics,” J. Mater. Sci., 13, 441–449 (1978).

    Article  CAS  ADS  Google Scholar 

  20. O. A. Golikova, “Structure of amorphous hydrogenated silicon films deposited by the decomposition of silan in the d. c. magnetic field,” Fiz. Tekh. Polyprov., 31, No. 7, 816–819 (1997).

    CAS  Google Scholar 

  21. O. A. Golikova and M. M. Kazanin, “Films of amorphous hydrogenated silicon with high photosensitivity,” Fiz. Tekh. Polyprov., 33, No. 1, 110 –113 (1999).

    Google Scholar 

  22. V. A. Grishchenko, Yu. N. Novikov, A. V. Shaposhnikova, et al., “Numerical modeling of intrinsic defects in SiO2 and Si3N4,” Fiz. Tekh. Polyprov., 35, No. 9, 1041–1049 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Zdolnik.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 49, No. 1–2 (471), pp. 124–137, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernyakova, I.V., Zdolnik, S.N. & Petrovskii, V.Y. Microstructure and conductivity of hot-pressed Si3N4–TiO2 (TiH2) composites cooled at different rates. Powder Metall Met Ceram 49, 99–109 (2010). https://doi.org/10.1007/s11106-010-9208-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-010-9208-6

Keywords

Navigation