Skip to main content
Log in

Manganese-like metastable phases in the Fe–Mo system: experimental study and thermodynamic modeling. I. Crystalline state of Fe–Mo melt-spinning alloys

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The β-Mn structure (π-phase) is revealed on contact and free surfaces of Fe63Mo37 melt-spinning ribbons. The full-profile analysis (Rietveld analysis) of diffraction patterns for a mixture of polycrystalline phases has identified, along with the metastable π phase, bcc solid solutions, μ and σ phases, and an intermediate bcc phase in the Fe–Mo phase diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. V. Raynor and V. G. Rivlin, “Phase equilibria in iron ternary systems. 15: Critical evaluation of constitutions of certain ternary alloys containing iron, tungsten, and a third metal,” Int. Met. Rev., 28, No. 2, 122–129 (1983).

    CAS  Google Scholar 

  2. G. V. Raynor and V. G. Rivlin, “Phase equilibria in iron ternary systems. 15: Critical evaluation of ternary alloys of iron and molybdenum with cobalt, chromium, manganese and nickel,” Int. Met. Rev., 29, No. 5, 329–375 (1984).

    CAS  Google Scholar 

  3. V. G. Rivlin, “Phase equilibria in iron ternary alloys. 17: Critical review of constitution of carbon–iron–molybdenum system,” Int. Met. Rev., 30, No. 3, 109–124 (1985).

    CAS  Google Scholar 

  4. T. Ya. Velikanova, M. Turchanin, T. Dobatkina, and T. A. Velikanova, “Carbon-iron-molybdenum,” in: Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, W. Martinsen (ed.), New Series: Group IV: Physical Chemistry, G. Effenberg and S. Ilyenko (ed.), Ternary Alloy Systems, Phase Diagrams, Crystallographic and Thermodynamic Data Critically Evaluated by MSIT, Springer-Verlag, Berlin, Heidelberg (2008), Vol. 11D2, pp. 124–172.

  5. A. Bondar, V. Ivanchenko, A. Kozlov, and J.-C. Tedenak, “Carbon–chromium–iron,” in: Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, W. Martinsen (ed.), New Series: Group IV: Physical Chemistry, G. Effenberg and S. Ilyenko (ed.), Ternary Alloy Systems, Phase Diagrams, Crystallographic and Thermodynamic Data Critically Evaluated by MSIT, Springer-Verlag, Berlin, Heidelberg (2008), Vol. 11D2, pp. 1–55.

  6. K. Kornienko, “Carbon–iron–tungsten,” in: Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, W. Martinsen (ed.), New Series: Group IV: Physical Chemistry, G. Effenberg and S. Ilyenko (ed.), Ternary Alloy Systems, Phase Diagrams, Crystallographic and Thermodynamic Data Critically Evaluated by MSIT, Springer-Verlag, Berlin, Heidelberg (2008), Vol. 11D2, pp. 357–386.

  7. A. Croupa, “Chromium-iron-molybdenum,” in: Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, W. Martinsen (ed.), New Series: Group IV: Physical Chemistry, G. Effenberg and S. Ilyenko (ed.), Ternary Alloy Systems, Phase Diagrams, Crystallographic and Thermodynamic Data Critically Evaluated by MSIT, Springer-Verlag, Berlin, Heidelberg (2008), Vol. 11D3, pp. 106–126.

  8. N. P. Lyakishev (ed.), Phase Diagrams of Binary Metal Systems: Handbook [in Russian], 3 Vols., Vol. 1, Mashinostroenie, Moscow (1996), p. 992.

  9. T. B. Massalski, H. Okamoto, P. R. Subramanian, et al. (eds.), Binary Alloy Phase Diagram, ASM International, Materials Park, Ohio (1990), 3 Vols., p. 3589.

  10. K. W. Andrews and P. E. Brooker, “Chi phase in alloy steels. Its relationship to sigma phase,” Met. Treatm. Drop Forging, 18, No. 70, pp. 301–311 (1951).

    CAS  Google Scholar 

  11. K. Kuo, “New intermediate phase in burnt tungsten steel,” J. Metals, 8, 97 (1956).

    CAS  Google Scholar 

  12. H. J. Goldschmidt, “Occurrence of the beta-manganese structure in transition metal alloys, and some observation on chi-phase equilibria,” Metallurgia, 56, No. 333, 17–26 (1957).

    CAS  Google Scholar 

  13. V. I. Ul’shin, L. A. Poznyak, and S. V. Ul’shin, “Phase and structural changes during the sintering of compacts of high-speed steels obtained from powders with various rates of solidification,” Powder Metal. Met. Ceram., 38, No. 11–12, 572–578 (1999).

    Article  Google Scholar 

  14. K. W. Andrews, “A new intermetallic phase in alloy steels,” Nature, 164, No. 4180, 1015 (1949).

    Article  CAS  ADS  Google Scholar 

  15. J. G. McMullin, S. P. Peiter, and D. G. Ebeling, “Equilibrium structures in Fe–Cr–Mo system,” Trans. A.S.M., 46, 799–811 (1954).

    Google Scholar 

  16. J. S. Kasper, “The ordering of atoms in the Chi-phase of the iron–chromium–molybdenum system,” Acta Met., 2, No. 3, 456–461 (1954).

    Article  CAS  Google Scholar 

  17. B. V. Haenko, S. Ya. Golub, T. A. Velikanova, et al., “Formation of phases with α- and β-Mn structure in iron-based alloys,” Fiz. Met. Metalloved., 75, No. 1, 123–130 (1993).

    Google Scholar 

  18. B. V. Khaenko, S. Ya. Golub, T. A. Velikanova, and L. V. Artyukh, “Investigation of the phase composition of Fe–Mo–C and Fe–Mo–Cr–C alloys in the range of potential existence of the χ and π phases,” in: Phase Diagrams in Materials Science [in Russian], Inst. Probl. Materialoved. AN USSR, Kiev (1991), pp. 120–126.

  19. T. A. Velikanova and V. M. Danilenko, “Thermodynamic modeling of phase equilibria in the ternary Mo–Fe–Cr system,” in: Mathematical Models and Computational Experiment in Materials Science [in Russian], Inst. Probl. Materialoved. Kiev (2008), Issue 10, pp. 3–20.

  20. S. Ya. Golub, V. A. Kotko, L. D. Kulak, et al., “New structure of rapidly quenched tungsten–molybdenum steel,” Dokl. AN USSR, Ser. A., No. 6, 62–65 (1987).

  21. S. A. Firstov, S. Ya. Golub, L. D. Kular, et al., “New metastable iron-based phase formed in ultrarapid crystallization of low-alloyed steels,” Fiz. Met. Metalloved., 65, No. 4, 772–775 (1988).

    CAS  Google Scholar 

  22. A. Inoue, L. Arnberg, M. Oguchi, et al., “Preparation of Fe–Cr–Mo–C amorphous powders and microstructure and mechanical properties of their hot-pressed products,” Mat. Sci. Eng., 95, 101–114 (1987).

    Article  CAS  Google Scholar 

  23. T. A. Velikanova and N. A. Graivoronskii, “Electron microscopy of rapidly quenched Fe–Mo–C alloys containing metastable carbon intermetallics,” in: Carbides and Materials on Their Basis [in Russian], Inst. Probl. Materialoved. NAN Ukrainy, Kiev (1995), pp. 162–168.

  24. A. Inoue, T. Iwadachi, T. Minemura, et al., “Nonequilibrium phase in Fe–X–C (X = Cr, Mo or W) ternary alloys quenched rapidly from melts,” Trans. JIM, 22, No. 3, 197–209 (1981).

    Google Scholar 

  25. J.-O. Andersson, “A thermodynamic evaluation of the Fe–Mo–C system,” CALPHAD, 12, No. 1, 9–23 (1988).

    Article  CAS  Google Scholar 

  26. P. Villars and L. D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, ASM International, Materials Park, Ohio (1991), 4 Vols., p. 3566.

  27. H. Herman (ed.), Ultrarapid Quenching of Liquid Alloys, Treatise on Material Science and Technology, Vol. 20, Academic Press, New York (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Velikanova.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 49, No. 1–2 (471), pp. 108–117, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velikanova, T.A., Karpets, M.V., Kuprin, V.V. et al. Manganese-like metastable phases in the Fe–Mo system: experimental study and thermodynamic modeling. I. Crystalline state of Fe–Mo melt-spinning alloys. Powder Metall Met Ceram 49, 86–93 (2010). https://doi.org/10.1007/s11106-010-9206-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-010-9206-8

Keywords

Navigation