Skip to main content
Log in

Direct multiscale modeling of diffusion sintering of ceramic composites

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

A new approach is proposed to model the sintering of inhomogeneous macroscopic powder bodies. Each macroscopic element has a corresponding representative cell defined at the mesoscopic level of powder particles. Numerical modeling is carried out both at the level of representative cells and macroscopic level. The new approach does not use macroscopic constitutive equations in analytical form but rather derive them by homogenization over the representative cells. Thus, the number of internal parameters in sintering models can be increased and the effect of other parameters such as pore size distribution and anisotropy on sintering kinetics can be considered. Free sintering of ceramic matrix composites with coarse inert inclusions is modeled as an example. It is shown that the results of modeling and experiment agree if shear-induced dilatation of ceramic matrix powder during sintering is assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Skorokhod, Rheological Theory of Sintering [in Russian], Naukova Dumka, Kiev (1972).

    Google Scholar 

  2. E. A. Olevsky, “Theory of sintering from discrete to continuum,” Mat. Sci. Eng. R., 23, No. 2, 41–100 (1998).

    Article  Google Scholar 

  3. P. Z. Cai, G. L. Messing, and D. J. Green, “Determination of the mechanical response of sintering compacts by cyclic loading dilatometry,” J. Am. Ceram. Soc., 80, 445–452 (1997).

    CAS  Google Scholar 

  4. A. L. Maksimenko, “Direct multiscale modeling of cold pressing of metal powders,” Powder Metall. Met. Ceram., 48, No. 3–4, 145–151 (2009).

    Article  CAS  Google Scholar 

  5. Ya. E. Geguzin, Physics of Sintering [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  6. H. J. Frost and M. F. Ashby, Deformation-Mechanism Maps, Pergamon Press, Oxford (1982).

    Google Scholar 

  7. I. M. Lifshits and V. B. Shikin, “Diffusion viscous flow of porous bodies,” Fiz. Trerd. Tela, No. 6, 1735–1743 (1964).

    CAS  Google Scholar 

  8. A. Needleman and J. R. Rice, “Plastic creep flow effects in the diffusive cavitation of grain boundaries,” Acta Met., 28, 1315–1332 (1980).

    Article  CAS  Google Scholar 

  9. J. Pan, and A. C. F. Cocks, “A numerical technique for the analysis of coupled surface and grain-boundary diffusion,” Acta Met. Mat., 43, No. 4, 1395–1406 (1995).

    Article  CAS  Google Scholar 

  10. J. Svoboda and H. Riedel, “Pore-boundary interactions and evolution equations for the porosity and evolution equations for the porosity and grain size during sintering,” Acta Met. Mat., 40, No. 11, 2829–2840 (1992).

    Article  CAS  Google Scholar 

  11. G. W. Scherer, “Sintering with rigid inclusions,” J. Am. Ceram. Soc., 70, No. 10, 719–725 (1987).

    Article  CAS  Google Scholar 

  12. R. K. Bordia and G. W. Scherer, “On constrained sintering. Part III. Rigid inclusions,” Acta Met., 36, No. 9, 2411–2416 (1988).

    Article  CAS  Google Scholar 

  13. R. K. Bordia and R. Raj, “Sintering of TiO2–Al2O3 composites: a model experimental investigation,” J. Am. Ceram. Soc., 34, No. 7, 302–310 (1988).

    Article  Google Scholar 

  14. G. W. Scherer and A. Jagota, “Viscosities and sintering rates of a two-dimensional granular composite,” J. Am. Ceram. Soc., 76, No. 12, 3123–3135 (1993).

    Article  Google Scholar 

  15. C. R. Blanchard and K. S. Chen, “Evidence of grain-boundary sliding induced cavitation in ceramics under compression,” J. Am. Ceram. Soc., 76, No. 7, 1651–1660 (1993).

    Article  CAS  Google Scholar 

  16. K. S. Chen, R. A. Page, and J. Lankford, “Cavity nucleation at grain-boundary ledges,” Acta Met., 34, No. 12, 2361–2370 (1986).

    Article  Google Scholar 

  17. M.-Y. Chu, L. C. de Jonghe, and M. N. Rahaman, “Effect of temperature on the densification/ creep viscosity during sintering,” Acta Met., 37, No. 5, 1415–1420 (1989).

    Article  CAS  Google Scholar 

  18. M. W. Weiser and L. C. de Jonghe, “Inclusion size and sintering of composite powders,” J. Am. Ceram. Soc., 71, No. 3, 125–128 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Maksimenko.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 49, No. 1–2 (471), pp. 32–41, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksimenko, A.L. Direct multiscale modeling of diffusion sintering of ceramic composites. Powder Metall Met Ceram 49, 24–30 (2010). https://doi.org/10.1007/s11106-010-9197-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-010-9197-5

Keywords

Navigation