Skip to main content
Log in

Structural evolution in annealing of layered C–Cu composite films

  • STRUCTURAL MATERIALS RESEARCH
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Thin carbon–copper layered films are sputtered using a dc magnetron unit. Transmission electron microscopy and electron diffraction are used to examine the structural evolution of the films in annealing at 600°C in vacuum. Two types of films are examined: two-layer carbon–copper and three-layer carbon–copper–carbon films. In annealing, the copper layers disintegrate, ensembles of copper particles form, and diffusion coalescence of particles in the two-layer film is observed. Hence, the density of copper particles decreases and their ensemble-average size increases. The coalescence in the two-layer film is slower than that predicted by theory because of the actual microstructure of quasiamorphous carbon substrate film. In the three-layer film, no coalescence is observed because of the specific morphologic and structural features of copper particles and carbon layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Liu, B. Blanpain, X. Shi, et al., “Tribological behavior of different diamond-like carbon materials,” Surf. Coat. Technol., 106, 72–80 (1998).

    Article  CAS  Google Scholar 

  2. C. Ronning, U. Griesmeier, M. Gross, et al., “Conduction processes in boron- and nitrogen-doped diamond-like carbon films prepared by mass-separated ion beam deposition,” Diamond Relat. Mater., 4, 666–672 (1995).

    Article  Google Scholar 

  3. J. D. Carey and S. R. P. Silva, “Effects of nanoscale clustering in amorphous carbon,” in: G. Messina and S. Santangelo (eds.), Carbon: The Future Material for Advanced Technology Applications, Springer, Heidelberg, Berlin (2006), pp. 137–152.

    Google Scholar 

  4. T. I. T. Okpalugo, P. D. Maguire, A. A. Ogwu, and J. A. D. McLaughlin, “The effects of silicon doping and thermal annealing on the electrical and structural properties of hydrogenated amorphous carbon thin films,” Diamond Relat. Mater., 13, 1549–1552 (2004).

    Article  CAS  Google Scholar 

  5. C. C. Chen and F. C. N. Hong, “Structure and properties of diamond-like carbon nanocomposite films containing copper nanoparticles,” Appl. Surf. Sci., 242, 261–269 (2005).

    Article  ADS  CAS  Google Scholar 

  6. G. L. Doll, J. P. Heremans, T. A. Perry, and J. V. Mantese, “Optical and electronic properties of nitrogen-implanted diamond-like carbon films,” J. Mater. Res., 9, 85–90 (1994).

    Article  ADS  CAS  Google Scholar 

  7. H. Hofsäss, H. Binder, T. Klumpp, and E. Recknagel, “Doping and growth of diamond-like carbon films by ion beam deposition,” Diamond Relat. Mater., 3, 137–142 (1993).

    Article  Google Scholar 

  8. J. M. Ting and H. Lee, “DLC composite thin films by sputter deposition,” Diamond Relat. Mater., 11, 1119–1123 (2002).

    Article  CAS  Google Scholar 

  9. Gy. J. Kovács, G. Sáfrán, et al., “Structure and mechanical properties of carbon-nickel and CN x –nickel nanocomposite films,” Surf. Coat. Technol., 180-181, 331–334 (2004).

    Article  Google Scholar 

  10. D. Y. Wang, K. W. Weng, and S. Y. Hwang, “Study on metal-doped diamond-like carbon films synthesized by cathodic arc evaporation,” Diamond Relat. Mater., 9, 1762–1766 (2000).

    Article  CAS  Google Scholar 

  11. K. I. Schiffmann, M. Fryda, G. Goerigk, et al., “Sizes and distances of metal clusters in Au, Pt-, W- and Fe-containing diamond-like carbon hard coatings: a comparative study by small angle X-ray scattering, wide angle X-ray diffraction, transmission electron microscopy and scanning tunneling microscopy,” Thin Sol. Films, 347, 60–71 (1999).

    Article  ADS  CAS  Google Scholar 

  12. A. A. Voevodin, J. P. O’Neill, S. V. Prasad, and J. S. Zabinski, “Nanocrystalline WC and WC–a-C composite coatings produced from intersected plasma fluxes at low deposition temperatures,” J. Vac. Sci. Technol., A 17, 986–992 (1999).

    ADS  Google Scholar 

  13. Y. Pauleau and F. Thièry, “Deposition and characterization of nanostructured metal–carbon composite films,” Surf. Coat. Technol., 180–181, 313–322 (2004).

    Article  Google Scholar 

  14. P. A. Chen, “Characteristics of copper-incorporated amorphous carbon film,” Thin Solid Films, 182, 261–263 (1989).

    Article  ADS  CAS  Google Scholar 

  15. H. Dimigen and C.-P. Klages, “Microstructure and wear behavior of metal-containing diamond-like coatings,” Surf. Coat. Technol., 49, 543–547 (1991).

    Article  CAS  Google Scholar 

  16. A. A. Onoprienko, N. I. Danilenko, and I. A. Kossko, “Structure evolution on annealing of copper-doped carbon films,” Thin Solid Films, 515, 6672–6675 (2007).

    Article  ADS  CAS  Google Scholar 

  17. I. M. Lifshits and V. V. Slyozov, “The kinetics of precipitation from supersaturated solid solutions,” J. Phys. Chem. Sol., 19, 35–50 (1961).

    Article  ADS  Google Scholar 

  18. A. A. Onoprienko, V. V. Artamonov, and I. B. Yanchuk, “Effect of magnetron discharge power on the resistivity and microstructure of carbon films,” Surf. Coat. Technol., 200, 4174–4178 (2006).

    Article  CAS  Google Scholar 

  19. Ya. E. Geguzin, Yu. S. Kaganovsky, and V. V. Slyozov, “Determination of the surface heterodiffusion coefficient by the method of mass transfer,” J. Phys. Chem. Sol., 30, 1173–1178 (1969).

    Article  ADS  CAS  Google Scholar 

  20. A. A. Onoprienko, V. V. Artamonov, and I. B. Yanchuk, “Effect of deposition and anneal temperature on the resistivity of magnetron sputtered carbon films,” Surf. Coat. Technol., 172, 189–193 (2003).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Onoprienko.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 48, No. 1–2 (465), pp. 119–127, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onoprienko, A.A., Danilenko, N.I. Structural evolution in annealing of layered C–Cu composite films. Powder Metall Met Ceram 48, 93–99 (2009). https://doi.org/10.1007/s11106-009-9089-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-009-9089-8

Keywords

Navigation