Skip to main content
Log in

Thermodynamic assessment of the Cu-Ti-Zr system. I. Cu-Ti system

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

The CALPHAD method is used for the thermodynamic assessment of the Cu-Ti system that bounds the ternary Cu-Ti-Zr system, which is capable of forming amorphous alloys. The self-consistent parameters of thermodynamic models of the phases are obtained from data on the phase equilibria and thermodynamic properties of liquid alloys and intermetallic compounds. The Gibbs energy of the liquid phase is described using the associated ideal solution model. To describe the thermodynamic properties of the Cu4Ti and CuTi intermetallic compounds with homogeneity range, sublattice models are used. The calculated phase diagram of the system and the thermodynamic properties of the phases are in good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys,” Acta Mater., 48, 279–306 (2000).

    Article  CAS  Google Scholar 

  2. Y. Zhang, D. Q. Zhao, M. X. Pan, and W. H. Wang, “Glass forming properties of Zr-based bulk metallic alloys,” J. Non-Crystalline Solids, 315, 206–210 (2003).

    Article  CAS  Google Scholar 

  3. E. Ence and H. Margolin, “A study of the Ti-Cu-Zr system and the structure of Ti2Cu,” Trans. Metal. Soc. AIME, 221, 320–322 (1961).

    CAS  Google Scholar 

  4. C. G. Woychik and T. B. Massalski, “Phase diagram relationships in the system copper-titanium-zirconium,” Z. Metallkd., 79, No. 3, 149–153 (1988).

    CAS  Google Scholar 

  5. V. N. Chebotnikov and V. V. Molokanov, “Structure and properties of alloys of the Ti2Cu-Zr2Cu section of the Ti-Zr-Cu system in amorphous and crystalline states,” Izv. AN SSSR, Neorg. Mater., 26, No. 5, 960–964 (1990).

    CAS  Google Scholar 

  6. Yu. K. Kovneristyi and A. G. Pashkovskaya, “Bulk amorphization of alloys of the Ti-Cu-Zr system which includes intermetallic compounds,” in: Amorphization (Glass Formation) of Metallic Materials [in Russian], Inst. Metallurgii RAN, Moscow (1992), pp. 153–157.

    Google Scholar 

  7. A. M. Storchak-Fedyuk, V. M. Petyukh, and L. V. Artyukh, “Study of cast alloys of the Cu-Ti-Zr system,” in: Modern Problems of Materials Science, Ser. Physical and Chemical Fundamentals of Powder Technology [in Russian], Kiev (2007), pp. 22–26.

  8. A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, “High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems,” Acta Mater., 49, No. 14, 2645–2652 (2001).

    Article  CAS  Google Scholar 

  9. T. Shindo, Y. Waseda, and A. Inoue, “Prediction of critical compositions for bulk glass formation in Labased, Cu-based and Zr-based ternary alloys,” Mater. Trans., JIM, 44, No. 3, 351–357 (2003).

    Article  CAS  Google Scholar 

  10. Q. S. Zhang, H. F. Zhang, Y. F. Deng, et al., “Bulk metallic glass formation of Cu-Zr-Ti-Sn alloys,” Scr. Mater., 49, No. 4, 273–278 (2003).

    Article  CAS  Google Scholar 

  11. R. Arroyave, T. W. Eagar, and L. Kaufman, “Thermodynamic assessment of the Cu-Ti-Zr system,” J. Alloys Compd., 351, No. 1–2, 158–170 (2003).

    Article  CAS  Google Scholar 

  12. T. Velikanova and M. A. Turchanin, “Cu-Ti-Zr,” in: Ternary Alloy Systems. Phase Diagrams, Crystallographic and Thermodynamic Data, G. Effenberg and S. Ilyenko (eds.), Vol. 11C3, Springer-Verlag, Germany, Berlin, Heidelberg (2006), pp. 436–464.

    Google Scholar 

  13. A. R. Abdulov, M. A. Turchanin, P. G. Agraval, and A. A. Solorev, “Mixing enthalpy of liquid alloys of the Cu-Ti-Zr system,” Metally, No. 1, 28–34 (2007).

  14. U. Thiedermann, M. Rosner-Kuhn, K. Drewes, et al., “Mixing enthalpy measurements of liquid Ti-Zr, Fe-Ti-Zr, and Fe-Ni-Zr alloys,” J. Steel Research, 70, No. 1, 3–8 (1999).

    Google Scholar 

  15. M. A. Turchanin, P. G. Agraval, A. N. Fesenko, and A. R. Abdulov, “Thermodynamics of liquid alloys and metastable phase transformations in the copper-titanium system,” Powder Metall. Met. Ceram., 44, No. 5–6, 259–270 (2005).

    Article  CAS  Google Scholar 

  16. A. A. Turchanin, I. A. Tomilin, M. A. Turchanin, et al., “Enthalpies of formation of liquid and amorphous Zr-Cu alloys,” J. Non-Crystalline Solids, 250–252, 582–585 (1999).

    Article  Google Scholar 

  17. A. D. McQuillan, “The application of hydrogen equilibrium-pressure measurements to the investigation of titanium alloy systems,” J. Ins. Metals., 79, 73–88 (1951).

    CAS  Google Scholar 

  18. A. Joukainen, N. J. Grant, and C. F. Floe, “Titanium-copper binary phase diagram,” J. Metals, 4, 766–770 (1952).

    CAS  Google Scholar 

  19. E. Raub, P. Walter, and H. Engel, “Alloys of titanium with copper, silver and gold,” Z. Metallkd., 43, 112–118 (1952).

    CAS  Google Scholar 

  20. W. Trzebiatowski, J. Berak, and T. Romotowski, “The copper-titanium system,” Roczniki Chemii, 27, 426–437 (1953).

    CAS  Google Scholar 

  21. V. N. Vigdorovich, A. N. Krestovnikov, and M. V. Mal’tsev, “Microhardness investigation of solid solutions of ternary systems,” Izvest. Akad. Nauk SSSR. Otdel. Tekh. Nauk, No. 3, 110–113 (1958).

  22. M. J. Saarivirta and H. S. Cannon, “Copper-titanium alloys,” Metal Progress, 76, No. 2, 81–84 (1959).

    CAS  Google Scholar 

  23. K. P. Kalinin and M. Z. Spiridonov, “Studying the properties of copper-titanium alloys,” Tr. Gos. Nauchn.-Issled. Proektn. Inst. Obrab. Tsvetn. Metal., 18, 46–57 (1960).

    Google Scholar 

  24. P. Pietrokowsky and J. R. Maticich, “Use of the electron microprobe analyzer in the study of binary metal alloy systems,” in: Proc. 3rd Int. Symp. X-Ray Opt. X-Ray Microanalysis, Stanford (1963), pp. 591–602.

  25. K. Schubert, “About titanium-copper and titanium-silver systems,” Z. Metallkd., 56, No. 3, 197–199 (1965).

    CAS  Google Scholar 

  26. V. N. Eremenko, Yu. I. Buyanov, and S. B. Prima, “Phase diagram of the system titanium-copper,” Powder Metall. Met. Ceram., 5, No. 6, 494–502 (1966).

    Article  Google Scholar 

  27. V. N. Eremenko, Yu. I. Buyanov, and N. M. Panchenko, “Polythermal and isothermal sections of the system titanium-copper-silver,” Powder Metall. Met. Ceram., 9, No. 5, 410–414 (1970).

    Google Scholar 

  28. R. C. Ecob, J. V. Bee, and B. Ralph, “The structure of the β-phase in dilute copper-titanium alloys,” Physica Stat. Sol. A, 52, No. 1, 201–210 (1979).

    Article  CAS  Google Scholar 

  29. G. Vigier, J. M. Pelletier, and J. Merlin, “Determination of copper solubility in titanium and study of titanium-copper solid solution stability by thermoelectric power measurements,” J. Less-Common Met., 64, No. 2, 175–183 (1979).

    Article  CAS  Google Scholar 

  30. K. Nagata and S. Nishikawa, “Aging and reversion phenomena of copper-titanium alloy,” in: Report of the Institute of Industrial Science, University of Tokyo, 29, No. 4, p. 40 (1981).

    Google Scholar 

  31. J.-Y. Brun, S.-J-H. Thibault, and C.-H. Allibert, “Cu-Ti and Cu-Ti-Al solid state phase equilibria in the copper-rich region,” Z. Metallkd., 74, No. 8, 525–529 (1983).

    CAS  Google Scholar 

  32. V. N. Eremenko, R. N. Mogilevskii, V. M. Sergeenkova, and V. M. Petyuukh, “Melting heat and homogeneity range of TiCu intermetallic compound,” Izv. AN SSSR, Metally, No. 6, 171–173 (1988).

  33. S. P. Alisova, N. V. Lutskaya, A. N. Kobylkin, and P. B. Budberg, “The TiFe-Ti2Cu section of the Ti-Fe-Cu system. Conditions for the formation of Ti2Cu,” Metally, No. 5, 170–172 (1994).

  34. T. Yamane, S. Nakajima, H. Araki, et al., “Partial phase diagrams of the titanium-rich region of the Ti-Cu system under high pressure,” J. Mater. Sci. Lett., 13, No. 3, 162–164 (1994).

    Article  CAS  Google Scholar 

  35. V. E. Oliker, A. A. Mamonova, and T. I. Shaposhnikova, “Structure and phase composition of the Ti-Cu diffusion zone,” Powder Metall. Met. Ceram., 35, No. 3–4, 173–175 (1996).

    Article  Google Scholar 

  36. S. Nagarjuna and D. S. Sarma, “On the variation of lattice parameter of Cu solid solution with solute content in Cu-Ti alloys,” Scr. Mater., 41, No. 4, 359–363 (1999).

    Article  CAS  Google Scholar 

  37. P. Canale and C. Servant, “Thermodynamic assessment of the Cu-Ti system taking into account the new stable phase CuTi3,” Z. Metallkd., 93, 273–276 (2002).

    CAS  Google Scholar 

  38. J. L. Murray, “Cu-Ti (copper-titanium),” in: Phase Diagrams of Binary Copper Alloys, ASM, Ohio (1994), pp. 447–460.

    Google Scholar 

  39. N. Karlsson, “An x-ray study of the phases in the copper-titanium system,” J. Inst. Met., 79, 391–405 (1951).

    CAS  Google Scholar 

  40. M. H. Mueller and H. W. Knott, “The Crystal Structures of Ti2Cu, Ti2Ni, Ti4Ni2O, and Ti4Cu2O,” Trans. Metall. Soc. AIME, 227, 674–678 (1963).

    CAS  Google Scholar 

  41. G. Lutjerung and S. Weissmann, “Mechanical properties and structure of age-hardened Ti-Cu alloys,” Metal. Trans., 1, No. 6, 1641–1649 (1970).

    Article  Google Scholar 

  42. M. A. Turchanin, I. V. Belokonenko, and P. G. Agraval, “Applying the ideal associated-solution theory to the description of the temperature-concentration dependence of the thermodynamic properties of binary melts,” Rasplavy, No. 1, 58–69 (2001).

  43. M. Arita, R. Kinaka, and M. Someno, “Application of the metal-hydrogen equilibration for determining thermodynamic properties in the titanium-copper system,” Met. Trans. A, 10, No. 5, 529–534 (1979).

    Article  Google Scholar 

  44. O. I. Kleppa and S. Watanabe, “Thermochemistry of alloys of transition metals. Part III. Copper-silver,-titanium,-zirconium and-hafnium at 1373 K,” Met. Trans. B, 13, No. 1, 391–401 (1982).

    Article  Google Scholar 

  45. C. Colinet, A. Pasturel, and K. H. J. Buschow, “Enthalpies of formation of Ti-Cu intermetallic and amorphous phases,” J. All. Comp., 247, 15–19 (1997).

    Article  CAS  Google Scholar 

  46. L. Kaufman, “Coupled phase diagrams and thermochemical data for transition metal binary systems-III,” CALPHAD, 2, No. 2, 117–146 (1978).

    Article  CAS  Google Scholar 

  47. H. Kumar, I. Ansara, P. Wollants, and L. Delaey, “Thermodynamic optimization of the Cu-Ti system,” Z. Metallkd., 87, No. 8, 666–672 (1996).

    Google Scholar 

  48. M. A. Turchanin and S. V. Porokhnya, “Enthalpy of formation of liquid alloys of copper with titanium and zirconium,” Rasplavy, No. 5, 29–32 (1995).

  49. A. T. Dinsdale, “SGTE data for pure elements,” CALPHAD, 15, No. 4, 317–425 (1991).

    Article  CAS  Google Scholar 

  50. J.-O. Andersson, A. F. Guillermet, M. Hillert, et al., “A compound-energy model of ordering in a phase with sites of different coordination numbers,” Acta Metall., 34, 437–445 (1986).

    Article  CAS  Google Scholar 

  51. N. Saunders and A. P. Miodownik, CALPHAD (Calculation of Phase Diagrams), in: Comprehensive Guide, Vol. 1, Pergamon Materials Series (1998), p. 496.

    Google Scholar 

  52. M. Hillert, “The compound energy formalism,” J. Alloys Compd., 320, 161–176 (2001).

    Article  CAS  Google Scholar 

  53. I. Ansara, T. G. Chart, A. Fernandez Guillermet, et. al., “Group 2: Alloy system I thermodynamic modeling of selected topologically close-packed intermetallic compounds,” CALPHAD, 21, No. 2, 171–218 (1997).

    Article  CAS  Google Scholar 

  54. T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak (eds.), Binary Alloys Phase Diagrams, 2nd ed., ASM International, Ohio (1990), p. 3589.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Turchanin.

Additional information

__________

Translated from Poroshkovaya Metallurgiya, Vol. 47, No. 3–4 (460), pp. 102–121, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turchanin, M.A., Agraval, P.G. & Abdulov, A.R. Thermodynamic assessment of the Cu-Ti-Zr system. I. Cu-Ti system. Powder Metall Met Ceram 47, 344–360 (2008). https://doi.org/10.1007/s11106-008-9026-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-008-9026-2

Keywords

Navigation